Finite-difference approximation of dirichlet observation problems for weak solutions to the wave equation subject to Robin boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1323-1339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the wave equation with variable coefficients subject to Neumann and Robin boundary conditions, two mutually dual problems are considered: the Dirichlet observation problem with weak generalized solutions and the control problem with strong generalized solutions. Both problems are approximated by finite differences preserving the duality relation. The convergence of the approximate solutions is established in the norms of the corresponding dual spaces.
@article{ZVMMF_2007_47_8_a4,
     author = {M. M. Potapov},
     title = {Finite-difference approximation of dirichlet observation problems for weak solutions to the wave equation subject to {Robin} boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1323--1339},
     year = {2007},
     volume = {47},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a4/}
}
TY  - JOUR
AU  - M. M. Potapov
TI  - Finite-difference approximation of dirichlet observation problems for weak solutions to the wave equation subject to Robin boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1323
EP  - 1339
VL  - 47
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a4/
LA  - ru
ID  - ZVMMF_2007_47_8_a4
ER  - 
%0 Journal Article
%A M. M. Potapov
%T Finite-difference approximation of dirichlet observation problems for weak solutions to the wave equation subject to Robin boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1323-1339
%V 47
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a4/
%G ru
%F ZVMMF_2007_47_8_a4
M. M. Potapov. Finite-difference approximation of dirichlet observation problems for weak solutions to the wave equation subject to Robin boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1323-1339. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a4/

[1] Potapov M. M., “Metod pryamykh v zadachakh granichnogo upravleniya i nablyudeniya dlya giperbolicheskogo uravneniya s kraevymi usloviyami vtorogo i tretego roda”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1996, no. 2, 35–41 | MR | Zbl

[2] Potapov M. M., “Approksimatsiya zadachi dirikhle-upravleniya i dvoistvennoi zadachi s neregulyarnymi Neiman-nablyudeniyami dlya volnovogo uravneniya”, Dokl. RAN, 408:5 (2006), 596–600 | MR

[3] Potapov M. M., “Priblizhennoe reshenie zadach dirikhle-upravleniya dlya volnovogo uravneniya v klassakh Soboleva i dvoistvennykh k nim zadach nablyudeniya”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2191–2208 | MR

[4] Potapov M. M., “Nablyudaemost neregulyarnykh reshenii zadachi Neimana dlya volnovogo uravneniya s peremennymi koeffitsientami”, Dokl. RAN, 412:6 (2007), 747–752 | MR

[5] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differents. ur-niya, 36:11 (2000), 1523–1528 | MR

[6] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differents. ur-niya, 36:12 (2000), 1670–1686 | MR

[7] Komornik V., Exact controllability and stabilization. The multiplier method, John Wiley and Sons, Chichester; Masson, Paris, 1994 | MR

[8] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi matem. nauk, 60:6(366) (2005), 89–114 | MR

[9] Znamenskaya L. N., Upravlenie uprugimi kolebaniyami, Fizmatlit, M., 2004 | Zbl

[10] Potapov M. M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, Dokl. RAN, 365:5 (1999), 596–598 | MR | Zbl

[11] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differents. ur-niya, 31:11 (1995), 1893–1900

[12] Potapov M. M., “Nablyudaemost neregulyarnykh reshenii tretei kraevoi zadachi dlya volnovogo uravneniya s peremennymi koeffitsientami”, Dokl. RAN, 414:6 (2007), 738–742 | MR | Zbl

[13] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[14] Ho L. F., “Exact controllability of the one-dimensional wave equation with locally distributed control”, SIAM J. Control. and Optimizat., 28:3 (1990), 733–748 | DOI | MR | Zbl

[15] Trenogin B. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[16] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR