@article{ZVMMF_2007_47_8_a10,
author = {A. D. Savel'ev},
title = {High-order composite compact schemes for simulation of viscous gas flows},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1387--1401},
year = {2007},
volume = {47},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a10/}
}
TY - JOUR AU - A. D. Savel'ev TI - High-order composite compact schemes for simulation of viscous gas flows JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1387 EP - 1401 VL - 47 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a10/ LA - ru ID - ZVMMF_2007_47_8_a10 ER -
A. D. Savel'ev. High-order composite compact schemes for simulation of viscous gas flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1387-1401. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a10/
[1] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51
[2] Tele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | MR
[3] Lele S., Lele S. K., Moin P., “Direct numerical simulation of isotropic turbylence interacting with a shock wave”, J. Fluid. Mech., 251 (1993), 533–562 | DOI
[4] Visbai M. R., Gaitonde D. V., “On the use of high-order finite-difference shcemes on curvilinear and deforming meshes”, J. Comput. Phys., 181 (2002), 155–185 | DOI | MR
[5] Tolstykh A. I., High accuracy non-centered compact schemes for fluid dynamics applicatins, World Sci., Singapore, 1994 | Zbl
[6] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322 | MR | Zbl
[7] Garanzha V. A., Konshin V. N., “Chislennye algoritmy dlya techenii vyazkoi zhidkosti, osnovannye na konservativnykh kompaktnykh skhemakh vysokogo poryadka approksimatsii”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1378–1392 | MR | Zbl
[8] Pulliam T. H., “Arfiticial dissipation models for the Euler equations”, AIAA. Journal, 24:12 (1986), 1931–1940 | DOI | Zbl
[9] Savelev A. D., O raznostnykh skhemakh vysokogo poryadka s sostavnymi stabiliziruyuschimi dobavkami, VTs RAN, M., 2003
[10] Chareravathv S. R., Osker S., A new class of high accuracy TVD schemes for hyperbolic consservation laws, AIAA Paper No 85-0363, 1985, 11 pp.
[11] Cockburn B., Shu C. W., “Nonlinearly stable compact schemes for shock calculations”, SIAM J. Numer. Analys., 31:3 (1994), 607–627 | DOI | MR | Zbl
[12] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987 | MR
[13] Savelev A. D., “Raschety techenii vyazkogo gaza na osnove $(q-\nu)$-modeli turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 589–600 | MR
[14] Steger Zh. L., “Neyavnyi konechno-raznostnyi metod dlya rascheta dvumernogo techeniya okolo tel proizvolnoi formy”, Raketnaya tekhn. i kosmonavtika, 16:7 (1978), 51–60
[15] Steger J. L., Warming R. F., “Flux vector spliting in the inviscid gas dynamic equations with applications to finite difference methods”, J. Comput. Phys., 40 (1981), 263–293 | DOI | MR | Zbl
[16] Yee H. C., Sandham N. D., Djomehri M. J., “Low dissipation high order shock-capturing methods usinc characteristic-based filters”, J. Comput. Phys., 150 (1999), 199–238 | DOI | MR | Zbl
[17] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR
[18] Setls Zh. S., Ves M. E., Bogdonov S. M., “Podrobnaya struktura turbulentnogo pogranichnogo sloya, otorvavshegosya pod deistviem skachka uplotneniya pered uglom szhatiya”, Raketnaya tekhn. i kosmonavtika, 14:12 (1976), 55–63
[19] Holst T. J., Viscous transonic airfoil workshop. Compendium of results, AIAA Paper No 87-1460, 1987, 32 pp.
[20] Coacley T. J., Turbulence modeling method for the compressible Navier–Stokes equations, AIAA Paper No 83-1693, 1983, 9 pp.
[21] Johnson D. A., King L. S., “A mathematically simple turbulence closure model for attached and separated boundary layers”, AIAA Journal, 23:11 (1985), 1684–1692 | DOI | MR