Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1287-1297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For quasi-variational inequalities of a special type with inexactly given data in a Hilbert space, continuous and discrete operator regularization methods are used to construct approximations that strongly converge to the solution to the original inequality.
@article{ZVMMF_2007_47_8_a1,
     author = {I. P. Ryazantseva},
     title = {Regularization methods for certain quasi-variational inequalities with inexactly given data in {a~Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1287--1297},
     year = {2007},
     volume = {47},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a1/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1287
EP  - 1297
VL  - 47
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a1/
LA  - ru
ID  - ZVMMF_2007_47_8_a1
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1287-1297
%V 47
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a1/
%G ru
%F ZVMMF_2007_47_8_a1
I. P. Ryazantseva. Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1287-1297. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a1/

[1] Ryazantseva I. P., “Metody pervogo poryadka dlya nekotorykh kvazivariatsionnykh neravenstv v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 47:2 (2007), 189–196 | MR | Zbl

[2] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[3] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[4] Ryazantseva I. P., “Variatsionnye neravenstva s monotonnymi operatorami na mnozhestvakh, zadannykh priblizhenno”, Zh. vychisl. matem i matem. fiz., 24:6 (1984), 932–935 | MR

[5] Alber Ya., Ryazantseva I., Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006 | MR

[6] Vladimirov A. A., Nesterov Yu. E., Chekanov Yu. N., “O ravnomerno vypuklykh funktsionalakh”, Vestn. MGU. Ser. 15, 1978, no. 3, 12–23 | MR | Zbl

[7] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[8] Alber Ya. I., Notik A. I., “On some estimates for projection operator in a Banach space”, Communs Appl. Nonlinear Analys., 2:1 (1995), 47–56 | MR

[9] Trenogin B. A., Funktsionalnyi analiz, Nauka, M., 1988

[10] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[11] Apartsin A. C., “K postroeniyu skhodyaschikhsya iteratsionnykh protsessov v gilbertovom prostranstve”, Tr. po prikl. matem. i kibernetike, Irkutsk, 1972, 7–14

[12] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Uralskaya izdat. firma “Nauka”, Ekaterinburg, 1993 | MR

[13] Noor M. A., “The quasi-complementarity problem”, J. Math. Analys. and Appl., 130:2 (1988), 344–353 | DOI | Zbl

[14] Siddiqi A. H., Ansari Q. H., “Strongly nonlinear quasivariational inequalities”, J. Math. Analys. and Appl., 149:2 (1990), 444–450 | DOI | MR | Zbl

[15] Siddiqi A. H., Ansari Q. H., “General strongly nonlinear variational inequalities”, J. Math. Analys. and Appl., 166:2 (1992), 386–392 | DOI | MR | Zbl

[16] Antipin A. C., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl

[17] Antipin A. C., “Reshenie variatsionnykh neravenstv so svyazannymi ogranicheniyami s pomoschyu differentsialnykh uravnenii”, Differents. ur-niya, 36:11 (2000), 1443–1451 | MR | Zbl

[18] Antipin A. C., Vasilev F. P., “Metody regulyarizatsii dlya resheniya neustoichivykh zadach ravnovesnogo programmirovaniya so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 27–40 | MR | Zbl