Numerical solution to the Kolmogorov–Feller equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 7, pp. 1221-1228
A finite-difference method is proposed for solving the Kolmogorov–Feller integro-differential equation. The numerical scheme constructed is an unconditionally stable marching scheme, and the boundary conditions are determined on the basis of an explicit solution to the original equation at boundary points.
@article{ZVMMF_2007_47_7_a8,
author = {N. A. Baranov and L. I. Turchak},
title = {Numerical solution to the {Kolmogorov{\textendash}Feller} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1221--1228},
year = {2007},
volume = {47},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a8/}
}
TY - JOUR AU - N. A. Baranov AU - L. I. Turchak TI - Numerical solution to the Kolmogorov–Feller equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1221 EP - 1228 VL - 47 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a8/ LA - ru ID - ZVMMF_2007_47_7_a8 ER -
N. A. Baranov; L. I. Turchak. Numerical solution to the Kolmogorov–Feller equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 7, pp. 1221-1228. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a8/
[1] Bulinskii A. B., Shiryaev A. N., Teoriya sluchainykh protsessov, Nauka, M., 2004
[2] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl
[3] Turchak L. I., Plotnikov P. V., Osnovy chislennykh metodov, Fizmatlit, M., 2002 | Zbl
[4] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994