Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 7, pp. 1192-1207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.
@article{ZVMMF_2007_47_7_a6,
     author = {V. I. Agoshkov and E. Botvinovsky},
     title = {Numerical solution of the nonstationary {Stokes} system by methods of adjoint-equation theory and optimal control theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1192--1207},
     year = {2007},
     volume = {47},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a6/}
}
TY  - JOUR
AU  - V. I. Agoshkov
AU  - E. Botvinovsky
TI  - Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1192
EP  - 1207
VL  - 47
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a6/
LA  - ru
ID  - ZVMMF_2007_47_7_a6
ER  - 
%0 Journal Article
%A V. I. Agoshkov
%A E. Botvinovsky
%T Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1192-1207
%V 47
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a6/
%G ru
%F ZVMMF_2007_47_7_a6
V. I. Agoshkov; E. Botvinovsky. Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 7, pp. 1192-1207. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_7_a6/

[1] Agoshkov V. I., Metody optimalnogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003 | MR

[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[3] Agoshkov V. A., “Optimal control methods in inverse problems and computational processes”, J. Inv. Ill-Posed Problems, 9:3 (2001), 205–218 | MR | Zbl

[4] Agoshkov V. I., Bardos C., Bideev S. N., Solution of the Stokes problem as an inverse problem, Preprint No 9935, Centre Math. Leuers Applic. E.N.S. de Cachan, Cachan, 1999

[5] Agoshkov V. I., Bardos C., Dubovski P. B., Panferov S. G., Reconstruction of source function for inverse transport problem in a slab, Preprint No 9818, CMLA, E.N.S., Cachan, 1998

[6] Agoshkov V. I., Bardos C., Parmuzin E. I., Shutyaev V. P., Numerical analysis of iterative algorithms for an inverse boundary transport problem, Preprint No 9812. Centre Math. Leuers Applic., E.N.S. de Cachan, Cachan, 1998 | MR

[7] Agoshkov V. I., “Iterative processes for some boundary value problems of hydrodynamics”, Russ. J. Numer. Analys. and Math. Modelling, 19:3 (2004), 207–222 | DOI | MR | Zbl

[8] Temam P., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[9] Proceedings of the First International Conference (Moscow, August 19–25, 1991), VSP, Utrecht, 1992 | MR

[10] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[11] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[12] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR