Models of a linearized Boltzmann collision integral
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 1029-1044 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For rarefied gas flows at moderate and low Knudsen numbers, model equations are derived that approximate the Boltzmann equation with a linearized collision integral. The new kinetic models generalize and refine the $S$-model kinetic equation.
@article{ZVMMF_2007_47_6_a8,
     author = {I. N. Larina and V. A. Rykov},
     title = {Models of a~linearized {Boltzmann} collision integral},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1029--1044},
     year = {2007},
     volume = {47},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a8/}
}
TY  - JOUR
AU  - I. N. Larina
AU  - V. A. Rykov
TI  - Models of a linearized Boltzmann collision integral
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1029
EP  - 1044
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a8/
LA  - ru
ID  - ZVMMF_2007_47_6_a8
ER  - 
%0 Journal Article
%A I. N. Larina
%A V. A. Rykov
%T Models of a linearized Boltzmann collision integral
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1029-1044
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a8/
%G ru
%F ZVMMF_2007_47_6_a8
I. N. Larina; V. A. Rykov. Models of a linearized Boltzmann collision integral. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 1029-1044. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a8/

[1] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[2] Larina I. H., Rykov V. A., “Raschet obtekaniya krugovogo tsilindra gazom pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1304–1320 | MR | Zbl

[3] Larina I. N., Rykov V. A., “Chislennyi metod vtorogo poryadka tochnosti dlya resheniya uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 559–568 | MR | Zbl

[4] Cheremisin F. G., Popov S. P., “Konservativnyi metod resheniya uravneniya Boltsmana dlya tsentralno-simmetrichnykh potentsialov vzaimodeistviya”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 163–176 | MR | Zbl

[5] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 1, 156–161

[6] Larina I. N., Rykov V. A., “Chislennoe reshenie uravneniya Boltsmana metodom simmetrichnogo rasschepleniya”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 601–613 | MR | Zbl

[7] Maslova N. B., Nonlinear evolution equations, Series on Advances in Mathematics for Applied Sciences, 10, Wold Scientific, 1993 | MR

[8] Pao Yung-nung, “Operator stolknovenii Boltsmana s beskonechnoi oblastyu deistviya mezhmolekulyarnykh potentsialov”, Sb. “Mekhanika. Novoe v zarubezhnoi nauke”, Mir, M., 1976, 85–90

[9] Sirovich L., “Dispersion relations in rarefied gas dynamics”, The Physics of Fluids, 6:1 (1993), 10–20 | DOI | MR

[10] Yingsong Zheng, Henning Struchtrup, “Ellipsoidal statistical Bhatnagar–Gross–Krook model with velocity-dependent collision frequency”, Phys. Fluids, 17 (2005), 127103, 17 pp. | MR | Zbl