Substantiation of two-scale homogenization of the equations governing the longitudinal vibrations of a viscoelastoplastic Ishlinskii material
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 988-1006 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial-boundary value problems for the system of quasilinear operator-differential equations governing the longitudinal vibrations of a viscoelastoplastic Ishlinskii material with nonsmooth rapidly oscillating coefficients and initial data are investigated. The system involves the hysteresis Prandtl–Ishlinskii operator. Passage to the limit to initial-boundary value problems for the corresponding system of two-scale homogenized operator integro-differential equations is strictly substantiated globally in time without assuming that the data are small.
@article{ZVMMF_2007_47_6_a5,
     author = {A. A. Amosov and I. A. Goshev},
     title = {Substantiation of two-scale homogenization of the equations governing the longitudinal vibrations of a~viscoelastoplastic {Ishlinskii} material},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {988--1006},
     year = {2007},
     volume = {47},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a5/}
}
TY  - JOUR
AU  - A. A. Amosov
AU  - I. A. Goshev
TI  - Substantiation of two-scale homogenization of the equations governing the longitudinal vibrations of a viscoelastoplastic Ishlinskii material
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 988
EP  - 1006
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a5/
LA  - ru
ID  - ZVMMF_2007_47_6_a5
ER  - 
%0 Journal Article
%A A. A. Amosov
%A I. A. Goshev
%T Substantiation of two-scale homogenization of the equations governing the longitudinal vibrations of a viscoelastoplastic Ishlinskii material
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 988-1006
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a5/
%G ru
%F ZVMMF_2007_47_6_a5
A. A. Amosov; I. A. Goshev. Substantiation of two-scale homogenization of the equations governing the longitudinal vibrations of a viscoelastoplastic Ishlinskii material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 988-1006. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a5/

[1] Bakhvalov H. S., Eglit M. E., “Protsessy v periodicheskikh sredakh, ne opisyvaemye v terminakh srednikh kharakteristik”, Dokl. AN SSSR, 268:4 (1983), 836–840 | MR | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[3] Eglit M. E., “Ob usrednennom opisanii protsessov v periodicheskikh uprugoplasticheskikh sredakh”, Mekhanika kompozitnykh materialov, 1984, no. 5, 825–831

[4] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Analys., 23 (1992), 1482–1518 | DOI | MR | Zbl

[5] Ishlinskii A. Yu., “Nekotorye primeneniya statistiki k opisaniyu zakonov deformirovaniya tel”, Izv. AN SSSR. Otdelenie tekhn. nauk, 1944, no. 9, 580–590

[6] Krasnoselskii M. A., Pokrovskii A. B., Sistemy s gisterezisom, Nauka, M., 1983 | MR

[7] Amosov A. A., Zlotnik A. A., “Obosnovanie kvaziosrednennykh uravnenii odnomernogo dvizheniya vyazkoi barotropnoi sredy s bystro ostsilliruyuschimi svoistvami”, Dokl. RAN, 342:3 (1995), 295–299 | MR | Zbl

[8] Amosov A. A., Zlotnik A. A., “O kvaziosrednennykh uravneniyakh odnomernogo dvizheniya vyazkoi barotropnoi sredy s bystroostsilliruyuschimi dannymi”, Zh. vychisl. matem. i matem. fiz., 36:2 (1996), 87–110 | MR | Zbl

[9] Amosov A. A., Zlotnik A. A., “O kvaziosrednenii sistemy uravnenii odnomernogo dvizheniya vyazkogo teploprovodnogo gaza s bystroostsilliruyuschimi dannymi”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1204–1219 | MR | Zbl

[10] Amosov A., Zlotnik A., “On two-scale homogenized equations of one-dimensional nonlinear thermoviscoelasticity with rapidly oscillating nonsmooth data”, C. R. Acad. Sci. Paris. Ser. IIb, 329:3 (2001), 169–174

[11] Amosov A. A., Zlotnik A. A., “Obosnovanie dvukhmasshtabnogo usredneniya uravnenii odnomernoi nelineinoi termovyazkouprugosti s negladkimi dannymi”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1713–1733 | MR | Zbl

[12] Amosov A. A., Goshev I. A., “Suschestvovanie i edinstvennost globalnykh obobschennykh reshenii sistemy uravnenii prodolnykh kolebanii vyazkouprugoplasticheskogo materiala Ishlinskogo”, Dokl. RAN, 410:1 (2006), 7–11 | MR | Zbl

[13] Amosov A. A., Goshev I. A., “Globalnaya odnoznachnaya razreshimost sistemy uravnenii prodolnykh kolebanii vyazkouprugoplasticheskogo materiala Ishlinskogo”, Differents. ur-niya, 43 (2007), 760–779 | MR | Zbl

[14] Francøcirc{u} J., Krejčí P., “Homogenization of scalar wave equations with hysteresis”, Continuum Mech. and Thermodynamics, 11 (1999), 371–391 | DOI | MR

[15] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[16] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[17] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[18] Saks S., Teoriya integrala, Izd-vo inostr. lit., M., 1949

[19] Amosov A. A., “O slaboi skhodimosti odnogo klassa bystroostsilliruyuschikh funktsii”, Matem. zametki, 62:1 (1997), 145–150 | MR | Zbl

[20] Amosov A. A., Zlotnik A. A., “Razreshimost “v tselom” odnogo klassa kvazilineinykh sistem uravnenii sostavnogo tipa s negladkimi dannymi”, Differents. ur-niya, 30:4 (1994), 596–609 | MR | Zbl

[21] Visintin A., Differential models of hysteresis, Springer, Berlin, Heidelberg, 1994 | MR

[22] Brokate M., Sprekels J., Hysteresis and phase transitions, Appl. Math. Sci., 121, Springer, New York, 1996 | MR | Zbl

[23] Krejčí P., Hysteresis. Convexity and dissipation in hyperbolic equations, Gakuto Int. Ser. Math. Sci. and Appl., 8, Gakkotosho, Tokyo, 1996 | MR | Zbl

[24] Prandtl L., “Ein Gedankenmodell zur knetischen Theorie der festen Körper”, Z. Angew. Math. und Mech., 8 (1928), 85–106 | DOI | Zbl

[25] Amosov A. A., Zlotnik A. A., “Edinstvennost i ustoichivost obobschennykh reshenii kvaziosrednennykh uravnenii odnomernogo dvizheniya vyazkoi barotropnoi sredy”, Differents. ur-niya, 31:7 (1995), 1123–1131 | MR | Zbl

[26] Goshev I. A., “Globalnaya odnoznachnaya razreshimost dvukhmasshtabnoi usrednennoi zadachi o prodolnykh kolebaniyakh vyazkouprugoplasticheskogo materiala Ishlinskogo”, Vestn. MEI, 2006, no. 6, 32–48

[27] Andrews G., “On the existence of solutions to the equation $u_{tt}=u_{xxt}+\sigma(u_x)_x$”, J. Different. Equation., 35 (1980), 200–231 | DOI | MR