Explicit multistep method for the numerical solution of stiff differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 959-967 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit multistep method of variable order for integrating stiff systems with high accuracy and low computational costs is examined. To stabilize the computational scheme, componentwise estimates are used for the eigenvalues of the Jacobian matrix having the greatest moduli. These estimates are obtained at preliminary stages of the integration step. Examples are given to demonstrate that, for certain stiff problems, the method proposed is as efficient as the best implicit methods.
@article{ZVMMF_2007_47_6_a2,
     author = {L. M. Skvortsov},
     title = {Explicit multistep method for the numerical solution of stiff differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {959--967},
     year = {2007},
     volume = {47},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a2/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Explicit multistep method for the numerical solution of stiff differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 959
EP  - 967
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a2/
LA  - ru
ID  - ZVMMF_2007_47_6_a2
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Explicit multistep method for the numerical solution of stiff differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 959-967
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a2/
%G ru
%F ZVMMF_2007_47_6_a2
L. M. Skvortsov. Explicit multistep method for the numerical solution of stiff differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 959-967. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a2/

[1] Fedorenko R. P., “Zhestkie sistemy obyknovennykh differentsialnykh uravnenii i ikh chislennoe integrirovanie”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 328–380 | MR

[2] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | MR

[3] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR

[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[5] Lebedev V. I., “Yavnye raznostnye skhemy dlya resheniya zhestkikh zadach s kompleksnym ili razdelimym spektrom”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1801–1812 | Zbl

[6] Gear C. W., Kevrekidis L. G., “Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum”, SIAM J. Sci. Comput., 24:4 (2003), 1091–1106 | DOI | MR | Zbl

[7] Fowler V. E., Warten R. M., “A numerical integration technique for ordinary differential equations with widely separated eigenvalues”, IBM J. Res. and Development, 11:5 (1967), 537–543 | DOI | MR | Zbl

[8] Bobkov V. V., “Novye yavnye $A$-ustoichivye metody chislennogo resheniya differentsialnykh uravnenii”, Differents. ur-niya, 14:12 (1978), 2249–2251 | MR | Zbl

[9] R. C. Aiken (ed.), Stiff computations, Oxford Univ. Press, N.Y., 1985 | MR | Zbl

[10] Zavorin A. N., “Primenenie nelineinykh metodov dlya rascheta perekhodnykh protsessov v elektricheskikh tsepyakh”, Izv. vuzov. Radioelektronika, 26:3 (1983), 35–41

[11] Skvortsov L. M., “Adaptivnye metody chislennogo integrirovaniya v zadachakh modelirovaniya dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1999, no. 4, 72–78 | MR | Zbl

[12] Skvortsov L. M., “Yavnye adaptivnye metody chislennogo resheniya zhestkikh sistem”, Matem. modelirovanie, 12:12 (2000), 97–107 | MR | Zbl

[13] Wu X. Y., Xia J. L., “Two low accuracy methods for stiff systems”, Appl. Math. Comput., 123 (2001), 141–153 | DOI | MR | Zbl

[14] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[15] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR

[16] Martin-Vaquero J., Vigo-Aguiar J., “Exponential fitting BDF algorithms: explicit and implicit 0-stable methods”, J. Comput. Appl. Math., 192:1 (2006), 100–113 | DOI | MR | Zbl

[17] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[18] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU” http://model.exponenta.ru/mvtu/20051121.html

[19] Kozlov O. C., Skvortsov L. M., “Testovoe sravnenie reshatelei ODU sistemy MATLAB”, Vseros. nauchn. konf. “Proektirovanie nauchnykh i inzhenernykh prilozhenii v srede MATLAB”, Izd-vo IPU RAN, M., 2002, 53–60 http://matlab.exponenta.ru/conf2002/proceedings.php

[20] Test set for initial value problem solvers. Release 2.2, August 2003 http://www.dm.uniba.it/~testset