@article{ZVMMF_2007_47_6_a12,
author = {A. A. Lazarev},
title = {Solution of the {NP-hard} total tardiness minimization problem in scheduling theory},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1087--1098},
year = {2007},
volume = {47},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a12/}
}
TY - JOUR AU - A. A. Lazarev TI - Solution of the NP-hard total tardiness minimization problem in scheduling theory JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1087 EP - 1098 VL - 47 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a12/ LA - ru ID - ZVMMF_2007_47_6_a12 ER -
A. A. Lazarev. Solution of the NP-hard total tardiness minimization problem in scheduling theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 1087-1098. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a12/
[1] Du J., Leung J. Y.-T., “Minimizing total tardiness on one processor is NP-hard”, Math. Operat. Res., 15 (1990), 483–495 | DOI | MR | Zbl
[2] Lawler E. L., “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Ann. Discrete Math., 1 (1977), 331–342 | DOI | MR | Zbl
[3] Szwarc W., Della Croce F., Grosso A., “Solution of the single machine total tardiness problem”, J. Scheduling, 2 (1999), 55–71 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Szwarc W., Grosso A., Della Croce F., “Algorithmic paradoxes of the single machine total tardiness problem”, J. Scheduling, 4 (2001), 93–104 | DOI | MR | Zbl
[5] Potts C. N., van Wassenhove L. N., “A decomposition algorithm for the single machine total tardiness problem”, Operat. Res. Letts, 1 (1982), 177–182 | DOI
[6] Della Croce F., Grosso A., Psachos V., “Lower bounds on the approximation ratios of leading heuristics for singlemachine total tardiness problem”, J. Scheduling, 7 (2004), 85–91 | DOI | MR
[7] Lazarev A. A., Rafarov E. R., “Dokazatelstvo NP-trudnosti chastotnogo sluchaya zadachi minimizatsii summarnogo zapazdyvaniya dlya odnogo pribora $1\|\sum T_j$”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 3, 120–128 | MR
[8] Lazarev A. A., Kvaratskheliya A. G., “Issledovanie NP-trudnoi problemy teorii raspisanii minimizatsii summarnogo zapazdyvaniya na odnom pribore”, Issl. po prikl. matem., 24, Kazan, 2003, 90–106
[9] Lazarev A. A., Kvaratskheliya A. G., Gafarov E. R., “Algoritmy resheniya NP-trudnoi problemy minimizatsii summarnogo zapazdyvaniya dlya odnogo pribora”, Dokl. RAN, 412:6 (2007), 739–742 | MR
[10] Emmons H., “One machine sequenciim to minimizing certain function of job tardiness”, Operat. Res., 17 (1969), 701–715 | DOI | MR | Zbl
[11] Chang S., Lu Q., Tang G., Yu W., “On decomposition of the total tardiness problem”, Operat. Res. Letts, 17 (1995), 221–229 | DOI | MR | Zbl