Coefficient inverse extremum problems for stationary heat and mass transfer equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 1055-1076 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A technique is developed for analyzing coefficient inverse extremum problems for a stationary model of heat and mass transfer. The model consists of the Navier-Stokes equations and the convection-diffusion equations for temperature and the pollutant concentration that are nonlinearly related via buoyancy in the Boussinesq approximation and via convective heat and mass transfer. The inverse problems are stated as the minimization of certain cost functionals at weak solutions to the original boundary value problem. Their solvability is proved, and optimality systems describing the necessary optimality conditions are derived. An analysis of the latter is used to establish sufficient conditions ensuring the local uniqueness and stability of solutions to the inverse extremum problems for particular cost functionals.
@article{ZVMMF_2007_47_6_a10,
     author = {G. V. Alekseev},
     title = {Coefficient inverse extremum problems for stationary heat and mass transfer equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1055--1076},
     year = {2007},
     volume = {47},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a10/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Coefficient inverse extremum problems for stationary heat and mass transfer equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1055
EP  - 1076
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a10/
LA  - ru
ID  - ZVMMF_2007_47_6_a10
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Coefficient inverse extremum problems for stationary heat and mass transfer equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1055-1076
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a10/
%G ru
%F ZVMMF_2007_47_6_a10
G. V. Alekseev. Coefficient inverse extremum problems for stationary heat and mass transfer equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 6, pp. 1055-1076. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_6_a10/

[1] Gad-el-Hak M., “Flow control”, Appl. Mech. Rev., 42:10 (1989), 261–293 | DOI

[2] M. D. Gunzburger (ed.), Flow control, IMA, 68, Springer, Berlin, 1995 | MR

[3] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[4] Gunzburger M. D., Hou L., Svobodny T. P., “The approximation of boundary control problems for fluid flows with an application to control by heating and cooling”, Comput. Fluids, 22 (1993), 239–251 | DOI | MR | Zbl

[5] Abergel F., Casas E., “Some optimal control problems of multistate equation appearing in fluid mechanics”, Math. Modeling Numer. Analys., 27 (1993), 223–247 | MR | Zbl

[6] Alekseev G. V., “Statsionarnye zadachi granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Dokl. RAN, 362:2 (1998), 174–177 | MR | Zbl

[7] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sibirskii matem. zhurnal, 39:5 (1998), 982–998 | MR | Zbl

[8] Alekseev G. V., Tereshko D. A., “On solvability of inverse extremal problems for the stationary equations of viscous heat conducting fluid”, J. Inverse Ill-posed Problems, 6:6 (1998), 521–562 | DOI | MR | Zbl

[9] Alekseev G. V., Tereshko D. A., “Statsionarnye zadachi optimalnogo upravleniya dlya uravnenii vyazkoi teploprovodnoi zhidkosti”, Sibirskii zh. industr. matem., 1:2 (1998), 24–44 | MR | Zbl

[10] Ito K., Ravindran S. S., “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl

[11] Anca C{ă}p{ă}ţină, Ruxandra Stavre, “A control problem in bioconvective flow”, J. Math. Kyoto Univ. (JMKYAZ), 37:4 (1998), 585–595

[12] Alekseev G. V., Adomavichus E. A., “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inverse. Ill-Posed Problems, 9:5 (2001), 435–468 | MR | Zbl

[13] Alekseev G. V., Adomavichyus E. A., “O razreshimosti neodnorodnykh kraevykh zadach dlya statsionarnykh uravnenii massoperenosa”, Dalnevostochnyi matem. zhurnal, 2:2 (2001), 138–153

[14] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[15] Alekseev G. V., Adomavichyus E. A., “Issledovanie obratnykh ekstremalnykh zadach dlya nelineinykh statsionarnykh uravnenii perenosa veschestva”, Dalnevostochnyi matem. zhurnal, 3:1 (2002), 79–92

[16] Alekseev G. V., Soboleva O. V., “Teoreticheskii analiz obratnykh ekstremalnykh zadach perenosa zagryazneniya”, Ch. 1, Vychisl. tekhn., 9, Spets. vyp. (2004), 167–175

[17] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial, M., 2004

[18] Tsirelman N. M., Pryamye i obratnye zadachi teplomassoperenosa, Atomizdat, M., 2005

[19] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sibirskii matem. zhurnal, 42:5 (2001), 971–991 | MR | Zbl

[20] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, London, 1985 | MR | Zbl

[21] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[22] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh modelei magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Uspekhi mekhan., 2006, no. 2, 66–115

[23] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973