Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 835-866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a rectangle, the Dirichlet problem for a system of two singularly perturbed elliptic reaction-diffusion equations is considered. The higher order derivatives of the $i$th equation are multiplied by the perturbation parameter $\varepsilon_i^2$ ($i=1,2$). The parameters $\varepsilon_i$ take arbitrary values in the half-open interval $(0,1]$. When the vector parameter $\boldsymbol\varepsilon=(\varepsilon_1, \varepsilon_2)$ vanishes, the system of elliptic equations degenerates into a system of algebraic equations. When the components $\varepsilon_1$ and (or) $\varepsilon_2$ tend to zero, a double boundary layer with the characteristic width $\varepsilon_1$ and $\varepsilon_2$ appears in the vicinity of the boundary. Using the grid refinement technique and the classical finite difference approximations of the boundary value problem, special difference schemes that converge $\boldsymbol\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N)$ are constructed, where $N=\min_sN_s$, $N_s+1$ is the number of mesh points on the axis $x_s$.
@article{ZVMMF_2007_47_5_a6,
     author = {G. I. Shishkin},
     title = {Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {835--866},
     year = {2007},
     volume = {47},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 835
EP  - 866
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/
LA  - ru
ID  - ZVMMF_2007_47_5_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 835-866
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/
%G ru
%F ZVMMF_2007_47_5_a6
G. I. Shishkin. Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 835-866. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/

[1] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[4] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[5] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[7] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[8] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Berlin, 1996 | MR

[9] Farrell P. A.,Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/CRC Press, Boca Raton, 2000 | MR | Zbl

[10] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1649–1662 | MR

[11] Miller J. J. H., O'Riordan E., Shishkin G. I., “On the use of fitted operator methods for singularly perturbed partial differential equations”, Advanced Math.: Comput. and Appl., Proc. Internat. Conf. AMCA-95 (Novosibirsk, June 20–24, 1995), NCC Publ., Novosibirsk, 1995, 518–531 | MR

[12] Farrell P. A., Miller J. J. H., O'Riordan E., Shishkin G. I., “On the non-existence of $\varepsilon$-uniform finite difference methods on uniform meshes for semilinear two-point boundary value problems”, Math. Comput., 67:222 (1998), 603–617 | DOI | MR | Zbl

[13] Brainina X. Z., Neiman E. Ya., Tverdofaznye reaktsii v elektroanaliticheskoi khimii, Khimiya, M., 1982

[14] Ladyzhenskaya O. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[15] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. Matem. in-ta AN SSSR, 77, M., 1965, 89–112 | Zbl

[16] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[17] Shishkin G. I., “Grid approximations of singularly perturbed elliptic equations in domain with characteristic bounds”, Soviet J. Numer. Analys. Math. Modelling, 5:4 (1990), 327–343 | DOI | MR | Zbl

[18] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh kraevykh zadach dlya sistem ellipticheskikh i parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 35:4 (1995), 542–564 | MR | Zbl

[19] Shishkin G. I., “Approksimatsiya sistem ellipticheskikh uravnenii konvektsii-diffuzii s parabolicheskimi pogranichnymi sloyami”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1648–1661 | MR | Zbl

[20] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh sistem ellipticheskikh i parabolicheskikh uravnenii s konvektivnymi chlenami”, Differents. ur-niya, 34:12 (1998), 1686–1696 | MR | Zbl

[21] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennogo ellipticheskogo uravneniya s konvektivnymi chlenami pri nalichii razlichnykh tipov pogranichnykh sloev”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 110–125 | MR | Zbl

[22] Linß T., Madden N., “Accurate solution of a system of coupled singularly perturbed reaction-diffusion equations”, Computing, 73 (2004), 121–133 | MR | Zbl

[23] Madden N., Stynes M., “A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems”, IMA J. Numer. Analys., 23 (2003), 627–644 | DOI | MR | Zbl

[24] Matthews S., O'Riordan E., Shishkin G. I., “A numerical method for a system of singularly perturbed reaction-diffusion equations”, J. Comput. and Appl. Math., 145:1 (2002), 151–166 | DOI | MR | Zbl

[25] Matthews S., Miller J. J. M., O'Riordan E., Shishkin G. I., “A parameter robust numerical method for a system of singularly perturbed ordinary differential equations”, Analytical and Numer. Methods for Convection-Dominated and Singularly Perturbed Problems, Nova Science, N.Y., 2000, 219–224