Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 835-866
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              In a rectangle, the Dirichlet problem for a system of two singularly perturbed elliptic reaction-diffusion equations is considered. The higher order derivatives of the $i$th equation are multiplied by the perturbation parameter $\varepsilon_i^2$ ($i=1,2$). The parameters $\varepsilon_i$ take arbitrary values in the half-open interval $(0,1]$. When the vector parameter $\boldsymbol\varepsilon=(\varepsilon_1, \varepsilon_2)$ vanishes, the system of elliptic equations degenerates into a system of algebraic equations. When the components $\varepsilon_1$ and (or) $\varepsilon_2$ tend to zero, a double boundary layer with the characteristic width $\varepsilon_1$ and $\varepsilon_2$ appears in the vicinity of the boundary. Using the grid refinement technique and the classical finite difference approximations of the boundary value problem, special difference schemes that converge $\boldsymbol\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N)$ are constructed, where $N=\min_sN_s$, $N_s+1$ is the number of mesh points on the axis $x_s$.
            
            
            
          
        
      @article{ZVMMF_2007_47_5_a6,
     author = {G. I. Shishkin},
     title = {Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {835--866},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin TI - Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 835 EP - 866 VL - 47 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/ LA - ru ID - ZVMMF_2007_47_5_a6 ER -
%0 Journal Article %A G. I. Shishkin %T Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 835-866 %V 47 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/ %G ru %F ZVMMF_2007_47_5_a6
G. I. Shishkin. Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 835-866. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a6/
