The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 784-795

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the computation of singular solutions to systems of nonlinear equations is proposed. It consists in the construction of an (overdetermined) defining system to which the Gauss–Newton method is applied. This approach leads to completely implementable local algorithms without nondeterministic elements. Under fairly weak conditions, these algorithms have locally superlinear convergence.
@article{ZVMMF_2007_47_5_a2,
     author = {M. Yu. Erina and A. F. Izmailov},
     title = {The {Gauss{\textendash}Newton} method for finding singular solutions to systems of nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {784--795},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/}
}
TY  - JOUR
AU  - M. Yu. Erina
AU  - A. F. Izmailov
TI  - The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 784
EP  - 795
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/
LA  - ru
ID  - ZVMMF_2007_47_5_a2
ER  - 
%0 Journal Article
%A M. Yu. Erina
%A A. F. Izmailov
%T The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 784-795
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/
%G ru
%F ZVMMF_2007_47_5_a2
M. Yu. Erina; A. F. Izmailov. The Gauss–Newton method for finding singular solutions to systems of nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 784-795. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/