The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 784-795 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the computation of singular solutions to systems of nonlinear equations is proposed. It consists in the construction of an (overdetermined) defining system to which the Gauss–Newton method is applied. This approach leads to completely implementable local algorithms without nondeterministic elements. Under fairly weak conditions, these algorithms have locally superlinear convergence.
@article{ZVMMF_2007_47_5_a2,
     author = {M. Yu. Erina and A. F. Izmailov},
     title = {The {Gauss{\textendash}Newton} method for finding singular solutions to systems of nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {784--795},
     year = {2007},
     volume = {47},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/}
}
TY  - JOUR
AU  - M. Yu. Erina
AU  - A. F. Izmailov
TI  - The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 784
EP  - 795
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/
LA  - ru
ID  - ZVMMF_2007_47_5_a2
ER  - 
%0 Journal Article
%A M. Yu. Erina
%A A. F. Izmailov
%T The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 784-795
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/
%G ru
%F ZVMMF_2007_47_5_a2
M. Yu. Erina; A. F. Izmailov. The Gauss–Newton method for finding singular solutions to systems of nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 784-795. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a2/

[1] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[2] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[3] Izmailov A. F., “Ob odnom klasse opredelyayuschikh sistem dlya osobykh reshenii nelineinykh uravnenii”, Vopr. modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2002, 18–57

[4] Izmailov A. F., Shtutsa M. Yu., “Klass nyutonovskikh metodov dlya otyskaniya osobykh reshenii nelineinykh uravnenii pri oslablennykh trebovaniyakh gladkosti”, Teor. i prikl. zadachi nelineinogo analiza, VTs RAN, M., 2005, 62–75 | MR

[5] Izmailov A. F., Shtutsa M. Yu., “Klass nyutonovskikh metodov dlya nelineinykh komplementarnykh zadach”, Teor. i prikl. zadachi nelineinogo analiza, VTs RAN, M., 2006, 3–22 | MR

[6] Brezhneva O. A., Izmailov A. F., Tretyakov A. A., Khmura A., “Odin podkhod k poisku osobykh reshenii sistemy nelineinykh uravnenii obschego vida”, Zh. vychisl. matem. i matem. fiz., 40:3 (2000), 365–377 | MR | Zbl

[7] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Test examples of systems of nonlinear equations. Version 3-90, Estonian Softweare and Computer Service Company, Tallin, 1990

[10] Chandrasekhar S., Radiative transfer, Dover, New York, 1960 | MR