On the choice of approximations in direct problems of nozzle design
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 923-936 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two problems are considered: the design of a supersonic nozzle with a uniform exit characteristic and the design of a subsonic nozzle part with a plane (straight) sonic line in the minimum cross section. It is shown how the choice of a nozzle profile approximation affects the direct solutions to variational gas dynamics problems. The nozzle profile is described by polynomials or splines (quadratic, cubic, rational). The varied variables are the profile's expansion coefficients in terms of basis functions or the parameters to be interpolated. It is shown that a priori information on the monotonicity of the desired profile improves the efficiency of the solution.
@article{ZVMMF_2007_47_5_a10,
     author = {Yu. S. Volkov and V. M. Galkin},
     title = {On the choice of approximations in direct problems of nozzle design},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {923--936},
     year = {2007},
     volume = {47},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a10/}
}
TY  - JOUR
AU  - Yu. S. Volkov
AU  - V. M. Galkin
TI  - On the choice of approximations in direct problems of nozzle design
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 923
EP  - 936
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a10/
LA  - ru
ID  - ZVMMF_2007_47_5_a10
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%A V. M. Galkin
%T On the choice of approximations in direct problems of nozzle design
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 923-936
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a10/
%G ru
%F ZVMMF_2007_47_5_a10
Yu. S. Volkov; V. M. Galkin. On the choice of approximations in direct problems of nozzle design. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 5, pp. 923-936. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_5_a10/

[1] Butov V. G., Vasenin I. M., Shelukha A. I., “Primenenie metodov nelineinogo programmirovaniya dlya resheniya variatsionnykh zadach gazovoi dinamiki”, Prikl. matem. i mekhan., 41:1 (1977), 59–64 | MR | Zbl

[2] Galkin V. M., Volkov Yu. S., “Sravnenie bazisnykh funktsii v pryamoi zadache profilirovaniya sverkhzvukovoi chasti sopla”, Sibirskii zhurnal industr. matem., 7:4(23) (2004), 48–58 | MR | Zbl

[3] Galkin V. M., “Numerical investigation two-phase flow in MHD generators on low temperature plasma”, Czech. J. Phys., 52, Suppl. D (2002), D433–D438

[4] Kraiko A. H., Variatsionnye zadachi gazovoi dinamiki, Nauka, M., 1979 | MR

[5] Katskova O. N., Raschet ravnovesnykh techenii gaza v sverkhzvukovykh soplakh, VTs AN SSSR, M., 1964

[6] Dennis Dzh.-ml., Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl

[7] Butov V. G., Khalimov S. B., “Raschet nepotentsialnykh techenii idealnogo gaza v osesimmetrichnykh soplakh metodom priblizhennoi faktorizatsii”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1861–1867 | MR | Zbl

[8] Galkin V. M., Zvegintsev V. I., “O postroenii mnogorezhimnogo osesimmetrichnogo sopla dlya giperzvukovoi aerodinamicheskoi truby”, Fundamentalnye i prikl. probl. sovrem. mekhan., Dokl. IV Vseros. nauchn. konf., Izd-vo Tomskogo un-ta, Tomsk, 2004, 293–294

[9] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[10] Schumaker L. L., Spline functions: Basic theory, Wiley, N.Y., 1981 | MR | Zbl

[11] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Constructive theory of function'84, Proc. Internat. Conf., Publ. House of Bulgar. Acad. Sci., Varna. Sofia, 1984, 610–620

[12] Spath H., Spline algorithms for curves and surfaces, Utilitas Math. Publ. Inc., Winnipeg, 1974 | MR