@article{ZVMMF_2007_47_4_a9,
author = {A. A. Zlotnik},
title = {On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {671--692},
year = {2007},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/}
}
TY - JOUR AU - A. A. Zlotnik TI - On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 671 EP - 692 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/ LA - ru ID - ZVMMF_2007_47_4_a9 ER -
%0 Journal Article %A A. A. Zlotnik %T On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 671-692 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/ %G ru %F ZVMMF_2007_47_4_a9
A. A. Zlotnik. On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 671-692. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/
[1] Givoli D., Numerical methods for unbounded domains, Elsevier, Amsterdam, 1992 | Zbl
[2] Tsynkov S. V., “Numerical solution of problems on unbounded domains. A review”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl
[3] Ryabenkii B. C., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002
[4] Hagstrom T., “New results on absorbing layers and radiation boundary conditions”, Topics in Comput. Wave propagation, Springer, Berlin etc, 2003, 1–42 | MR | Zbl
[5] Arnold A., “Numerically absorbing boundary conditions for quantum evolution equations”, VLSI Design, 6 (1998), 313–319 | DOI
[6] Ehrhardt M., Arnold A., “Discrete transparent boundary conditions for the Schrödinger equation”, Riv. Mat. Univ. Parma, 6 (2001), 57–108 | MR | Zbl
[7] Arnold A., Ehrhardt M., Sofronov I., “Discrete transparent boundary conditions for the Schrödinger equation: fast calculations, approximation and stability”, Communs Math. Sci., 1 (2003), 501–556 | MR | Zbl
[8] Ehrhardt M., “Discrete transparent boundary conditions for parabolic equations”, Z. Angew. Math. und Mech., 77:S2 (1997), 543–544 | MR
[9] Ehrhardt M., Discrete artificial boundary conditions, Ph.D. Thesis, Tech. Univ. Berlin, 2001 http://www.math.tuberlin.de/ehrhardt/publications.html
[10] Ehrhardt M., “Finite difference schemes on unbounded domains”, Applic. Nonstandard Finite Difference Schemes, v. 2, World Scient., Singapore, 2005, 343–384 | MR | Zbl
[11] Ducomet B., Zlotnik A., “On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I”, Communs Math. Sci., 4:4 (2006), 741–766 | MR | Zbl
[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhn., Minsk, 1987 | MR | Zbl
[13] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[15] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Izd. 5-e, Nauka, M., 1987 | MR
[16] Soize C., Méthodes mathématiques en analyse du signal, Masson, Paris, 1993
[17] Zlotnik A. A., “Some finite-element and finite-difference methods for solving mathematical physics problems with non-smooth data in $n$-dimensional cube”, Soviet J. Numer. Analys. Math. Model., 6 (1991), 421–451 | DOI | MR | Zbl
[18] Axelsson O., Gololobov S. V., “Stability and error estimates for the $\theta$-method for strongly monotone and infinitely stiff evolution equations”, Numer. Math., 89:1 (2001), 31–48 | DOI | MR | Zbl
[19] Gileva V. V., Zlotnik A. A., “O raznostnoi skheme s peremennym vesom dlya uravnenii odnomernogo dvizheniya vyazkoi szhimaemoi barotropnoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 44:6 (2004), 1079–1092 | MR | Zbl