On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 671-692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial-boundary value problems for self-adjoint parabolic equations on a semiaxis and a semibounded strip are considered. For finite-difference $\sigma$-schemes, an alternative method for stating approximate transparent boundary conditions is suggested and conditions ensuring unconditional stability in the energy norm with respect to the initial data and free terms for a weight $\sigma\ge1/2$ are presented. The validity of these stability conditions in the case of discrete transparent boundary conditions is proved (by several methods), and the derivation of the latter conditions is revisited.
@article{ZVMMF_2007_47_4_a9,
     author = {A. A. Zlotnik},
     title = {On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {671--692},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 671
EP  - 692
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/
LA  - ru
ID  - ZVMMF_2007_47_4_a9
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 671-692
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/
%G ru
%F ZVMMF_2007_47_4_a9
A. A. Zlotnik. On the stability of the $\sigma$-scheme with transparent boundary conditions for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 671-692. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a9/

[1] Givoli D., Numerical methods for unbounded domains, Elsevier, Amsterdam, 1992 | Zbl

[2] Tsynkov S. V., “Numerical solution of problems on unbounded domains. A review”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl

[3] Ryabenkii B. C., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002

[4] Hagstrom T., “New results on absorbing layers and radiation boundary conditions”, Topics in Comput. Wave propagation, Springer, Berlin etc, 2003, 1–42 | MR | Zbl

[5] Arnold A., “Numerically absorbing boundary conditions for quantum evolution equations”, VLSI Design, 6 (1998), 313–319 | DOI

[6] Ehrhardt M., Arnold A., “Discrete transparent boundary conditions for the Schrödinger equation”, Riv. Mat. Univ. Parma, 6 (2001), 57–108 | MR | Zbl

[7] Arnold A., Ehrhardt M., Sofronov I., “Discrete transparent boundary conditions for the Schrödinger equation: fast calculations, approximation and stability”, Communs Math. Sci., 1 (2003), 501–556 | MR | Zbl

[8] Ehrhardt M., “Discrete transparent boundary conditions for parabolic equations”, Z. Angew. Math. und Mech., 77:S2 (1997), 543–544 | MR

[9] Ehrhardt M., Discrete artificial boundary conditions, Ph.D. Thesis, Tech. Univ. Berlin, 2001 http://www.math.tuberlin.de/ehrhardt/publications.html

[10] Ehrhardt M., “Finite difference schemes on unbounded domains”, Applic. Nonstandard Finite Difference Schemes, v. 2, World Scient., Singapore, 2005, 343–384 | MR | Zbl

[11] Ducomet B., Zlotnik A., “On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I”, Communs Math. Sci., 4:4 (2006), 741–766 | MR | Zbl

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhn., Minsk, 1987 | MR | Zbl

[13] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[15] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Izd. 5-e, Nauka, M., 1987 | MR

[16] Soize C., Méthodes mathématiques en analyse du signal, Masson, Paris, 1993

[17] Zlotnik A. A., “Some finite-element and finite-difference methods for solving mathematical physics problems with non-smooth data in $n$-dimensional cube”, Soviet J. Numer. Analys. Math. Model., 6 (1991), 421–451 | DOI | MR | Zbl

[18] Axelsson O., Gololobov S. V., “Stability and error estimates for the $\theta$-method for strongly monotone and infinitely stiff evolution equations”, Numer. Math., 89:1 (2001), 31–48 | DOI | MR | Zbl

[19] Gileva V. V., Zlotnik A. A., “O raznostnoi skheme s peremennym vesom dlya uravnenii odnomernogo dvizheniya vyazkoi szhimaemoi barotropnoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 44:6 (2004), 1079–1092 | MR | Zbl