@article{ZVMMF_2007_47_4_a8,
author = {E. A. Volkov},
title = {On a~combined grid method for solving the {Dirichlet} problem for the {Laplace} equation in a~rectangular parallelepiped},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {665--670},
year = {2007},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/}
}
TY - JOUR AU - E. A. Volkov TI - On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 665 EP - 670 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/ LA - ru ID - ZVMMF_2007_47_4_a8 ER -
%0 Journal Article %A E. A. Volkov %T On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 665-670 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/ %G ru %F ZVMMF_2007_47_4_a8
E. A. Volkov. On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 665-670. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/
[1] Bakhvalov N. S., “Ob odnom sposobe priblizhennogo resheniya uravneniya Laplasa”, Dokl. AN SSSR, 114:3 (1957), 455–458 | MR | Zbl
[2] Volkov E. A., “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Russ. J. Numer. Analys. Math. Modelling, 19:3 (2004), 269–278 | DOI | MR | Zbl
[3] Volkov E. A., “O neizbezhnoi pogreshnosti metoda setok”, Matem. zametki, 4:6 (1968), 621–627 | MR | Zbl
[4] Volkov E. A., “Vesovye otsenki pogreshnosti metoda setok resheniya uravnenii Laplasa i Puassona”, Tr. MIAN SSSR, 117, M., 1972, 100–112 | Zbl
[5] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metodom setok”, Tr. MIAN SSSR, 105, M., 1969, 46–65 | Zbl
[6] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravneniya, Nauka, M., 1976 | MR | Zbl
[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[8] Volkov E. A., “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russ. J. Numer. Analyl. Math. Modelling, 16:6 (2001), 519–527 | MR | Zbl