On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 665-670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped is proposed. At the grid points that are at the distance equal to the grid size from the boundary, the 6-point averaging operator is used. At the other grid points, the 26-point averaging operator is used. It is assumed that the boundary values have the third derivatives satisfying the Lipschitz condition on the faces; on the edges, they are continuous and their second derivatives satisfy the compatibility condition implied by the Laplace equation. The uniform convergence of the grid solution with the fourth order with respect to the grid size is proved.
@article{ZVMMF_2007_47_4_a8,
     author = {E. A. Volkov},
     title = {On a~combined grid method for solving the {Dirichlet} problem for the {Laplace} equation in a~rectangular parallelepiped},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {665--670},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 665
EP  - 670
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/
LA  - ru
ID  - ZVMMF_2007_47_4_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%T On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 665-670
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/
%G ru
%F ZVMMF_2007_47_4_a8
E. A. Volkov. On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 665-670. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a8/

[1] Bakhvalov N. S., “Ob odnom sposobe priblizhennogo resheniya uravneniya Laplasa”, Dokl. AN SSSR, 114:3 (1957), 455–458 | MR | Zbl

[2] Volkov E. A., “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Russ. J. Numer. Analys. Math. Modelling, 19:3 (2004), 269–278 | DOI | MR | Zbl

[3] Volkov E. A., “O neizbezhnoi pogreshnosti metoda setok”, Matem. zametki, 4:6 (1968), 621–627 | MR | Zbl

[4] Volkov E. A., “Vesovye otsenki pogreshnosti metoda setok resheniya uravnenii Laplasa i Puassona”, Tr. MIAN SSSR, 117, M., 1972, 100–112 | Zbl

[5] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metodom setok”, Tr. MIAN SSSR, 105, M., 1969, 46–65 | Zbl

[6] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravneniya, Nauka, M., 1976 | MR | Zbl

[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[8] Volkov E. A., “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russ. J. Numer. Analyl. Math. Modelling, 16:6 (2001), 519–527 | MR | Zbl