Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 646-654 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The singularly perturbed parabolic equation $-u_t+\varepsilon^2\Delta u-f(u,x,\varepsilon)=0$, $x\in D\subset\mathbb R^2$, $t>0$ with Robin conditions on the boundary of $D$ is considered. The asymptotic stability as $t\to\infty$ and the global domain of attraction are analyzed for the stationary solution whose limit as $\varepsilon\to0$ is a nonsmooth solution to the reduced equation $f(u,x,0)=0$ that consists of two intersecting roots of this equation.
@article{ZVMMF_2007_47_4_a6,
     author = {V. F. Butuzov},
     title = {Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {646--654},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 646
EP  - 654
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/
LA  - ru
ID  - ZVMMF_2007_47_4_a6
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 646-654
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/
%G ru
%F ZVMMF_2007_47_4_a6
V. F. Butuzov. Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 646-654. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[2] Butuzov V. F., Nefedov H. H., Shnaider K. P., “Singulyarno vozmuschennye zadachi v sluchae smeny ustoichivosti”, Differents. ur-niya. Singulyarnye vozmuscheniya, Itogi nauki i tekhn. Ser. “Sovrem. matem. i ee prilozh.” Tematicheskie obzory, 109, VINITI, M., 2002, 5–242

[3] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed elliptic problems in the case of exchange of stabilities”, J. Different. Equat., 169 (2001), 373–395 | DOI | MR | Zbl

[4] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR