Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 646-654
Cet article a éte moissonné depuis la source Math-Net.Ru
The singularly perturbed parabolic equation $-u_t+\varepsilon^2\Delta u-f(u,x,\varepsilon)=0$, $x\in D\subset\mathbb R^2$, $t>0$ with Robin conditions on the boundary of $D$ is considered. The asymptotic stability as $t\to\infty$ and the global domain of attraction are analyzed for the stationary solution whose limit as $\varepsilon\to0$ is a nonsmooth solution to the reduced equation $f(u,x,0)=0$ that consists of two intersecting roots of this equation.
@article{ZVMMF_2007_47_4_a6,
author = {V. F. Butuzov},
title = {Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {646--654},
year = {2007},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/}
}
TY - JOUR AU - V. F. Butuzov TI - Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 646 EP - 654 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/ LA - ru ID - ZVMMF_2007_47_4_a6 ER -
%0 Journal Article %A V. F. Butuzov %T Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 646-654 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/ %G ru %F ZVMMF_2007_47_4_a6
V. F. Butuzov. Singularly perturbed two-dimensional parabolic problem in the case of intersecting roots of the reduced equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 646-654. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a6/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR
[2] Butuzov V. F., Nefedov H. H., Shnaider K. P., “Singulyarno vozmuschennye zadachi v sluchae smeny ustoichivosti”, Differents. ur-niya. Singulyarnye vozmuscheniya, Itogi nauki i tekhn. Ser. “Sovrem. matem. i ee prilozh.” Tematicheskie obzory, 109, VINITI, M., 2002, 5–242
[3] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed elliptic problems in the case of exchange of stabilities”, J. Different. Equat., 169 (2001), 373–395 | DOI | MR | Zbl
[4] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR