On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 638-645 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of the eigenvalues are examined in a nonlinear self-adjoint eigenvalue problem for linear Hamiltonian systems of ordinary differential equations. In particular, it is proved that, under certain assumptions, every eigenvalue is isolated and there exists an eigenvalue with any prescribed index.
@article{ZVMMF_2007_47_4_a5,
     author = {A. A. Abramov and V. I. Ul'yanova and L. F. Yukhno},
     title = {On certain properties of a~nonlinear eigenvalue problem for {Hamiltonian} systems of ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {638--645},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a5/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - V. I. Ul'yanova
AU  - L. F. Yukhno
TI  - On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 638
EP  - 645
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a5/
LA  - ru
ID  - ZVMMF_2007_47_4_a5
ER  - 
%0 Journal Article
%A A. A. Abramov
%A V. I. Ul'yanova
%A L. F. Yukhno
%T On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 638-645
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a5/
%G ru
%F ZVMMF_2007_47_4_a5
A. A. Abramov; V. I. Ul'yanova; L. F. Yukhno. On certain properties of a nonlinear eigenvalue problem for Hamiltonian systems of ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 638-645. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a5/

[1] Abramov A. A., “O vychislenii sobstvennykh znachenii nelineinoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 29–38 | MR | Zbl

[2] Roy den H. L., “Comparison theorems for the matrix Riccati equation”, Communs Pure and Appl. Math., 41 (1988), 730–746 | MR

[3] Moszyǹski K., “A method of solving the boundary value problem for a system of linear ordinary differential equations”, Algoritmy, 11:3 (1964), 25–43 | MR

[4] Abramov A. A., “Ob otyskanii sobstvennykh znachenii i sobstvennykh funktsii samosopryazhennoi differentsialnoi zadachi”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 819–831 | MR

[5] Yukhno L. F., “O chislennom reshenii nelineinoi spektralnoi zadachi dlya simmetricheskikh matrits”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1320–1326 | MR