Dynamically adapted grids for interacting discontinuous solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 717-737 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Further development of the dynamic adaptation method for gas dynamics problems that describe multiple interactions of shock waves, rarefaction waves, and contact discontinuities is considered. Using the Woodward–Colella problem and a nonuniformly accelerating piston as examples, the efficiency of the proposed method is demonstrated for the gas dynamics problems with shock wave and contact discontinuity tracking. The grid points are distributed under the control of the diffusion approximation. The choice of the diffusion coefficient for obtaining both quasi-uniform and strongly nonuniform grids for each subdomain of the solution is validated. The interaction between discontinuities is resolved using the Riemann problem for an arbitrary discontinuity. Application of the dynamic adaptation method to the Woodward–Colella problem made it possible to obtain a solution on a grid consisting of 420 cells that is almost identical to the solution obtained using the WENO5m method on a grid consisting of 12 800 cells. In the problem for a nonuniformly accelerating piston, a proper choice of the diffusion coefficient in the transformation functions makes it possible to generate strongly nonuniform grids, which are used to simulate the interaction of a series of shock waves using shock wave and contact discontinuity tracking.
@article{ZVMMF_2007_47_4_a11,
     author = {P. V. Breslavskiy and V. I. Mazhukin},
     title = {Dynamically adapted grids for interacting discontinuous solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {717--737},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a11/}
}
TY  - JOUR
AU  - P. V. Breslavskiy
AU  - V. I. Mazhukin
TI  - Dynamically adapted grids for interacting discontinuous solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 717
EP  - 737
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a11/
LA  - ru
ID  - ZVMMF_2007_47_4_a11
ER  - 
%0 Journal Article
%A P. V. Breslavskiy
%A V. I. Mazhukin
%T Dynamically adapted grids for interacting discontinuous solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 717-737
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a11/
%G ru
%F ZVMMF_2007_47_4_a11
P. V. Breslavskiy; V. I. Mazhukin. Dynamically adapted grids for interacting discontinuous solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 717-737. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a11/

[1] Thompson J. F., Warst Z. U. Z., Mastin C. W., Numerical grid generation, North-Holland, 1985 | MR

[2] Anderson D. A., “Equidistribution schemes, Poisson generators, and adaptive grid”, Appl. Math. and Comput., 24 (1987), 211–227 | DOI | MR | Zbl

[3] Liseikin V. D., “Ob universalnom ellipticheskom metode postroeniya adaptivnykh raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 44:12 (2004), 2167–2193 | MR | Zbl

[4] Darin H. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh raznostnykh setok”, Dokl. AN SSSR, 298:1 (1988), 64–68 | MR

[5] Anderson D. A., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidrodinamika i teploobmen, v. 1, 2, Mir, M., 1990 | MR | Zbl

[6] Ivanenko C. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 643–662 | MR | Zbl

[7] Yu. G. Evtushenko, M. K. Kerimov, V. A. Garanzhi (red.), Prikladnaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, Tr. Vseros. konf., v. 1, 2, VTs RAN, M., 2004

[8] Berger M. J., Coletta P., “Local adaptive mesh refinement for shock hydrodynamics”, J. Comput. Phys., 82 (1989), 64–84 | DOI | Zbl

[9] Berger M. J., “Data structures for adaptive grid generation”, SIAM J. Sci. Statist. Comput., 3 (1986), 904–916

[10] Hyman J. M., Li Sh., Iterative and dynamic control of adaptive mesh refinement with nested hierarchical grids, Los Alamos Lab. Rep. No 5462, 1998

[11] Andersen A., Zheng X., Cristini V., “Adaptive unstructured volume remeshing. I: The method”, J. Comput. Phys., 208:2 (2005), 616–625 | DOI | MR

[12] Nourgaliev R. R., Dinh T. N., Theofanous T. G., “Adaptive characteristics-based matching for compressible multifluid dynamics”, J. Comput. Phys., 213:2 (2006), 500–529 | DOI | Zbl

[13] Mazhukin V. I., Samarskii A. A., Shapranov A. B., “Metod dinamicheskoi adaptatsii v probleme Byurgersa”, Dokl. RAN, 333:2 (1993), 165–169 | MR | Zbl

[14] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 3–41 | MR

[15] Mazhukin V. I., Kastelyanos O., Samarskii A. A., Shapranov A. B., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matem. modelirovanie, 5:4 (1993), 32–56 | MR | Zbl

[16] Darin H. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya odnomernykh uravnenii gazovoi dinamiki na adaptivnykh setkakh”, Dokl. AN SSSR, 302:5 (1988), 1078–1081 | MR

[17] Liseikin V. D., “Tekhnologiya konstruirovaniya trekhmernykh setok dlya zadach aerogazodinamiki. (Obzor)”, Vopr. atomnoi nauki i tekhn. Ser. Matem. modelirovanie fiz. protsessov, 1991, no. 3, 31–45

[18] Darin H. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s ispolzovaniem adaptivnykh setok, dinamicheski svyazannykh s resheniem”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1210–1225 | MR

[19] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 7:12 (1995), 48–78 | MR

[20] Gilmanov A. N., “Primenenie dinamicheski adaptivnykh setok k issledovaniyu techenii s mnogomasshtabnoi strukturoi potoka”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 311–326 | MR

[21] Rudenko D. V., Utyuzhnikov S. V., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 395–409 | MR | Zbl

[22] Azarenok B. N., “Ob odnoi skheme rascheta detonatsionnykh voln na podvizhnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2260–2282 | MR | Zbl

[23] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Uchebn. posobie. Dlya vuzov, Izd. 3-e, dop., Nauka, M., 1992 | MR

[24] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[25] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[26] Van Leer B., “Towards the ultimate conservative finite difference scheme. I. The quest of monotonicity”, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Lect. Notes Phys., 18, no. 1, 1973, 163–168 | Zbl

[27] Van Leer B., “Towards the ultimate conservative finite difference scheme. II. Monotonicity and conservation combined in a second order scheme”, J. Comput. Phys., 14:4 (1974), 361–376 | DOI

[28] Boris J. P., Book D. L., Hain K., “Flux-corrected transport. II. Generalization of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | MR | Zbl

[29] Boris J. P., Book D. L., “Flux-corrected transport. III: Minimal-error FCT algorithms”, J. Comput. Phys., 20:4 (1976), 397–431 | DOI | Zbl

[30] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR

[31] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[32] Harten A., “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analys., 21:1 (1984), 1–23 | DOI | MR | Zbl

[33] Osher S., “Riemann solvers, the entropy condition, and difference approximation”, SIAM J. Numer. Analys., 21:2 (1984), 217–235 | DOI | MR | Zbl

[34] Osher S., Shu C.-W., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl

[35] Harten A., “ENO schemes with subcell resolution”, J. Comput. Phys., 83 (1989), 148–184 | DOI | MR | Zbl

[36] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl

[37] Colella Ph., Woodward P. R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[38] Kulikovskii A. G., Pogorelov H. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh uravnenii, Fizmatlit, M., 2001

[39] Bondarenko Yu. A., Bashurov V. V., Yanilkin Yu. V., Matematicheskie modeli i chislennye metody dlya resheniya zadach nestatsionarnoi gazovoi dinamiki. Obzor zarubezhnoi literatury, Preprint 88-2003, RFYaTs-VNIIEF, 53 pp.

[40] LeVeque R. J., Shyue K. M., “One-dimensional front tracking based on high resolution wave propagation methods”, SISC, 16:2 (1995), 348–377 | MR | Zbl

[41] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI

[42] Henshaw W. D., “A scheme for numerical solution of hyperbolic systems of conservation laws”, J. Comput. Phys., 68:1 (1987), 25–47 | DOI | Zbl

[43] Shyue K. M., “An efficient shock-capturing algorithm for compressible multicomponent problems”, J. Comput. Phys., 142 (1998), 208–242 | DOI | MR | Zbl

[44] Ivanenko C. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[45] Liseikin V. D., “On some interpretations of a smoothness functional used in constructing regular and adaptive gridrs”, Russ. J. Numer. Analys Modelling, 8:6 (1993), 507–518 | DOI | MR | Zbl

[46] Breslavskii P. V., Mazhukin V. I., “Matematicheskoe modelirovanie protsessov impulsnogo plavleniya i ispareniya metalla s yavnym vydeleniem fazovykh granits”, Inzh.-fiz. zhurnal, 57:1 (1989), 107–114

[47] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, In-t kompyuternykh issl., Moskva, Izhevsk, 2003

[48] Koroleva O. N., Mazhukin V. I., “Matematicheskoe modelirovanie lazernogo plavleniya i ispareniya mnogosloinykh materialov”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 887–901 | MR

[49] Henrick A. K.,Aslam T. D., Powers J. M., “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”, J. Comput. Phys., 207 (2005), 542–567 | DOI | Zbl

[50] Mazhukin V. I., Smurov I., Dupuy C., Jeandel D., “Simulationn of laser induced melting and evaporation processes in superconducting ceramics”, J. Numer. Heat Transfer Part A, 26 (1994), 587–600 | DOI