Numerical study of the basic stationary spherical couette flows at low Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 693-716 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previously developed iterative numerical methods with splitting of boundary conditions intended for solving an axisymmetric Dirichlet boundary value problem for the stationary Navier–Stokes system in spherical layers are used to study the basic spherical Couette flows (SCFs) of a viscous incompressible fluid in a wide range of outer-to-inner radius ratios $R/r$ ($1.1\le R/r\le100$) and to classify such SCFs. An important balance regime is found in the case of counter-rotating boundary spheres. The methods converge at low Reynolds numbers ($\mathrm{Re}$), but a comparison with experimental data for SCFs in thin spherical layers show that they converge for $\mathrm{Re}$ sufficiently close to $\mathrm{Re}_{\mathrm{cr}}$. The methods are second-order accurate in the max norm for both velocity and pressure and exhibit high convergence rates when applied to boundary value problems for Stokes systems arising at simple iterations with respect to nonlinearity. Numerical experiments show that the Richardson extrapolation procedure, combined with the methods as applied to solve the nonlinear problem, improves the accuracy up to the fourth and third orders for the stream function and velocity, respectively, while, for the pressure, the accuracy remains of the second order but the error is nevertheless noticeably reduced. This property is used to construct reliable patterns of stream-function level curves for large values of $R/r$. The possible configurations of fluid-particle trajectories are also discussed.
@article{ZVMMF_2007_47_4_a10,
     author = {B. V. Pal'tsev and A. V. Stavtsev and I. I. Chechel'},
     title = {Numerical study of the basic stationary spherical couette flows at low {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {693--716},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a10/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - A. V. Stavtsev
AU  - I. I. Chechel'
TI  - Numerical study of the basic stationary spherical couette flows at low Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 693
EP  - 716
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a10/
LA  - ru
ID  - ZVMMF_2007_47_4_a10
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A A. V. Stavtsev
%A I. I. Chechel'
%T Numerical study of the basic stationary spherical couette flows at low Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 693-716
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a10/
%G ru
%F ZVMMF_2007_47_4_a10
B. V. Pal'tsev; A. V. Stavtsev; I. I. Chechel'. Numerical study of the basic stationary spherical couette flows at low Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 693-716. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a10/

[1] Belyaev Yu. N., Yavorskaya I. M., “Techeniya vyazkoi zhidkosti vo vraschayuschikhsya sfericheskikh sloyakh i ikh ustoichivost”, Itogi nauki i tekhn. Ser. MZhG, 15, VINITI, M., 3–80

[2] Physics of rotation fluids, Selected Topics of 11-th Internat. Couette–Taylor Workshop. Held at Bremen, Germany, Lect. Notes Phys., Springer, Berlin, Heidelberg, 1999

[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[4] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[5] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[6] Paltsev B. V., Chechel I. I., “O metode 2-go poryadka tochnosti s rasschepleniem granichnykh uslovii resheniya statsionarnoi osesimmetrichnoi zadachi Nave–Stoksa v sharovykh sloyakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2232–2250 | MR

[7] Paltsev B. V., Chechel I. I., “O skorosti skhodimosti i optimizatsii chislennogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae. Modifikatsiya dlya tolstykh sloev”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 858–886 | MR

[8] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[9] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov, approksimatsiyakh operatorov Laplasa–Beltrami, gradienta i divergentsii na sfere v $\mathbb R^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR

[10] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[11] Paltsev B. V., Shmyglevskii Yu. D., “O podkhode razdelyayuschikh linii toka k obtekaemomu konturu v ploskoparallelnom potoke vyazkoi zhidkosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 2002, no. 2, 76–89 | MR

[12] Kochin N. E., Kabel I. A., Roze N. V., Teoreticheskaya gidromekhanika, v. II, Fizmatlit, M., 1963 | Zbl