Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 555-577 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of old and new results on the sensitivity of solutions to systems of optimality conditions with respect to parametric perturbations. Results of this kind play a key role in subtle convergence analysis of various constrained optimization algorithms. General systems of optimality conditions for problems with abstract constraints, Karush–Kuhn–Tucker systems for mathematical programs, and Lagrange systems for problems with equality constraints are examined. Special attention is given to the cases where the traditional constraint qualifications are violated.
@article{ZVMMF_2007_47_4_a0,
     author = {A. F. Izmailov},
     title = {Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {555--577},
     year = {2007},
     volume = {47},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/}
}
TY  - JOUR
AU  - A. F. Izmailov
TI  - Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 555
EP  - 577
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/
LA  - ru
ID  - ZVMMF_2007_47_4_a0
ER  - 
%0 Journal Article
%A A. F. Izmailov
%T Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 555-577
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/
%G ru
%F ZVMMF_2007_47_4_a0
A. F. Izmailov. Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 555-577. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/

[1] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[2] Klatte D., Kummer B., Nonsmooth equations in optimization: Regularity, calculus, methods and applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[3] Robinson S. M., “Strongly regular generalized equations”, Math. Operat. Res., 5 (1980), 43–62 | DOI | MR | Zbl

[4] Gauvin J., “A necessary and sufficient regularity conditions to have bounded multipliers in nonconvex programming”, Math. Program., 12 (1977), 136–138 | DOI | MR | Zbl

[5] Bonnans J. F., Sulem A., “Pseudopower expansion of solutions of generalized equations and constrained optimization”, Math. Program., 70 (1995), 123–148 | MR | Zbl

[6] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR

[7] Sukharev A. G., Timokhov A. B., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[8] Robinson S. M., Implicit $B$-differentiability in generalized equations, Techn. Rept No 2854 / Math. Res. Center Univ. Wisconsin, Univ. Wisconsin, Madison, 1985

[9] Shapiro A., “Second-order sensitivity analysis and asymptotic theory of parametrized, nonlinear programs”, Math. Program., 33 (1985), 280–290 | DOI | MR

[10] Klatte D., Tammer K., “Strong stability of stationary solutions and Karush–Kuhn–Tucker points in nonliner optimization”, Ann. Operat. Res., 27 (1990), 285–307 | DOI | MR | Zbl

[11] Levy A., “Solution sensitivity from general principles”, SIAM J. Control Optimization, 40 (2001), 1–38 | DOI | MR | Zbl

[12] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR

[13] Kyparisis J., “Sensitivity analysis for nonlinear programs and variational inequalities”, Math. Operat. Res., 15 (1990), 286–298 | DOI | MR | Zbl

[14] Qui Y.,Magnanti T. L., “Sensitivity analysis for variational inequalities”, Math. Operat. Res., 17 (1992), 61–76 | DOI | MR

[15] Kyparisis J., “Parametric variational inequalities with multivalued solution sets”, Math. Operat. Res., 17 (1992), 341–364 | DOI | MR | Zbl

[16] Shapiro A., “Sensitivity analysis of generalized equations”, J. Math. Sci., 115 (2003), 2554–2565 | DOI | MR | Zbl

[17] Izmailov A. F., Solodov M. V., “A note on solution sensitivity for Karush–Kuhn–Tucker systems”, Math. Meth. Oper. Res., 61:3 (2005), 347–363 | DOI | MR | Zbl

[18] Klatte D., “Upper Lipschitz behaviour of solutions to perturbed $C^{1,1}$ programs”, Math. Program., 88 (2000), 285–311 | DOI | MR | Zbl

[19] Klatte D., Kummer B., “Generalized Kojima functions and Lipschitz stability of critical points”, Comput. Optimizat. Appl., 13 (1999), 61–85 | DOI | MR | Zbl

[20] Klatte D., “Strong stability of stationary solutions and iterated local minimization”, Parametric Optimizat. and Related Topics, Akad. Verlag, Berlin, 1991, 119–136 | MR

[21] Robinson S. M., “A characterization of stability in linear systems”, Oper. Res., 25 (1977), 435–447 | DOI | MR | Zbl

[22] Robinson S. M., “Generalized equations and their solutions. Part II: Applications to nonlinear programming”, Math. Program. Study, 19 (1982), 200–221 | MR | Zbl

[23] Alekseev V. M., Tikhomirov V. M., Fomin C. B., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[24] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl

[25] Izmailov A. F., “Ob analiticheskoi i vychislitelnoi ustoichivosti kriticheskikh mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 966–982 | MR | Zbl

[26] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[27] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[28] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl

[29] Arutyunov A. B., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl

[30] Arutyunov A. B., Izmailov A. F., “Teoriya chuvstvitelnosti dlya anormalnykh zadach optimizatsii s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 186–202 | MR | Zbl