@article{ZVMMF_2007_47_4_a0,
author = {A. F. Izmailov},
title = {Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {555--577},
year = {2007},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/}
}
TY - JOUR AU - A. F. Izmailov TI - Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 555 EP - 577 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/ LA - ru ID - ZVMMF_2007_47_4_a0 ER -
%0 Journal Article %A A. F. Izmailov %T Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 555-577 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/ %G ru %F ZVMMF_2007_47_4_a0
A. F. Izmailov. Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 4, pp. 555-577. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_4_a0/
[1] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006
[2] Klatte D., Kummer B., Nonsmooth equations in optimization: Regularity, calculus, methods and applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[3] Robinson S. M., “Strongly regular generalized equations”, Math. Operat. Res., 5 (1980), 43–62 | DOI | MR | Zbl
[4] Gauvin J., “A necessary and sufficient regularity conditions to have bounded multipliers in nonconvex programming”, Math. Program., 12 (1977), 136–138 | DOI | MR | Zbl
[5] Bonnans J. F., Sulem A., “Pseudopower expansion of solutions of generalized equations and constrained optimization”, Math. Program., 70 (1995), 123–148 | MR | Zbl
[6] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR
[7] Sukharev A. G., Timokhov A. B., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl
[8] Robinson S. M., Implicit $B$-differentiability in generalized equations, Techn. Rept No 2854 / Math. Res. Center Univ. Wisconsin, Univ. Wisconsin, Madison, 1985
[9] Shapiro A., “Second-order sensitivity analysis and asymptotic theory of parametrized, nonlinear programs”, Math. Program., 33 (1985), 280–290 | DOI | MR
[10] Klatte D., Tammer K., “Strong stability of stationary solutions and Karush–Kuhn–Tucker points in nonliner optimization”, Ann. Operat. Res., 27 (1990), 285–307 | DOI | MR | Zbl
[11] Levy A., “Solution sensitivity from general principles”, SIAM J. Control Optimization, 40 (2001), 1–38 | DOI | MR | Zbl
[12] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR
[13] Kyparisis J., “Sensitivity analysis for nonlinear programs and variational inequalities”, Math. Operat. Res., 15 (1990), 286–298 | DOI | MR | Zbl
[14] Qui Y.,Magnanti T. L., “Sensitivity analysis for variational inequalities”, Math. Operat. Res., 17 (1992), 61–76 | DOI | MR
[15] Kyparisis J., “Parametric variational inequalities with multivalued solution sets”, Math. Operat. Res., 17 (1992), 341–364 | DOI | MR | Zbl
[16] Shapiro A., “Sensitivity analysis of generalized equations”, J. Math. Sci., 115 (2003), 2554–2565 | DOI | MR | Zbl
[17] Izmailov A. F., Solodov M. V., “A note on solution sensitivity for Karush–Kuhn–Tucker systems”, Math. Meth. Oper. Res., 61:3 (2005), 347–363 | DOI | MR | Zbl
[18] Klatte D., “Upper Lipschitz behaviour of solutions to perturbed $C^{1,1}$ programs”, Math. Program., 88 (2000), 285–311 | DOI | MR | Zbl
[19] Klatte D., Kummer B., “Generalized Kojima functions and Lipschitz stability of critical points”, Comput. Optimizat. Appl., 13 (1999), 61–85 | DOI | MR | Zbl
[20] Klatte D., “Strong stability of stationary solutions and iterated local minimization”, Parametric Optimizat. and Related Topics, Akad. Verlag, Berlin, 1991, 119–136 | MR
[21] Robinson S. M., “A characterization of stability in linear systems”, Oper. Res., 25 (1977), 435–447 | DOI | MR | Zbl
[22] Robinson S. M., “Generalized equations and their solutions. Part II: Applications to nonlinear programming”, Math. Program. Study, 19 (1982), 200–221 | MR | Zbl
[23] Alekseev V. M., Tikhomirov V. M., Fomin C. B., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[24] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl
[25] Izmailov A. F., “Ob analiticheskoi i vychislitelnoi ustoichivosti kriticheskikh mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 966–982 | MR | Zbl
[26] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR
[27] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl
[28] Izmailov A. F., “Teoremy o predstavlenii semeistv nelineinykh otobrazhenii i teoremy o neyavnoi funktsii”, Matem. zametki, 67:1 (2000), 57–68 | MR | Zbl
[29] Arutyunov A. B., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | MR | Zbl
[30] Arutyunov A. B., Izmailov A. F., “Teoriya chuvstvitelnosti dlya anormalnykh zadach optimizatsii s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 186–202 | MR | Zbl