Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 460-480
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A problem for the Black–Scholes equation that arises in financial mathematics is reduced, by a transformation of variables, to the Cauchy problem for a singularly perturbed parabolic equation with the variables $x$, $t$ and a perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. This problem has several singularities such as the unbounded domain, the piecewise smooth initial function (its first-order derivative in $x$ has a discontinuity of the first kind at the point $x=0$), an interior (moving in time) layer generated by the piecewise smooth initial function for small values of the parameter $\varepsilon$, etc. In this paper, a grid approximation of the solution and its first-order derivative is studied in a finite domain including the interior layer. On a uniform mesh, using the method of additive splitting of a singularity of the interior layer type, a special difference scheme is constructed that allows us to $\varepsilon$-uniformly approximate both the solution to the boundary value problem and its first-order derivative in $x$ with convergence orders close to 1 and 0.5, respectively. The efficiency of the constructed scheme is illustrated by numerical experiments.
            
            
            
          
        
      @article{ZVMMF_2007_47_3_a8,
     author = {S. Li and G. I. Shishkin and L. P. Shishkina},
     title = {Approximation of the solution and its derivative for the singularly perturbed {Black{\textendash}Scholes} equation with nonsmooth initial data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {460--480},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/}
}
                      
                      
                    TY - JOUR AU - S. Li AU - G. I. Shishkin AU - L. P. Shishkina TI - Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 460 EP - 480 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/ LA - en ID - ZVMMF_2007_47_3_a8 ER -
%0 Journal Article %A S. Li %A G. I. Shishkin %A L. P. Shishkina %T Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 460-480 %V 47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/ %G en %F ZVMMF_2007_47_3_a8
S. Li; G. I. Shishkin; L. P. Shishkina. Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 460-480. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/
