Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 460-480

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem for the Black–Scholes equation that arises in financial mathematics is reduced, by a transformation of variables, to the Cauchy problem for a singularly perturbed parabolic equation with the variables $x$, $t$ and a perturbation parameter $\varepsilon$, $\varepsilon\in(0,1]$. This problem has several singularities such as the unbounded domain, the piecewise smooth initial function (its first-order derivative in $x$ has a discontinuity of the first kind at the point $x=0$), an interior (moving in time) layer generated by the piecewise smooth initial function for small values of the parameter $\varepsilon$, etc. In this paper, a grid approximation of the solution and its first-order derivative is studied in a finite domain including the interior layer. On a uniform mesh, using the method of additive splitting of a singularity of the interior layer type, a special difference scheme is constructed that allows us to $\varepsilon$-uniformly approximate both the solution to the boundary value problem and its first-order derivative in $x$ with convergence orders close to 1 and 0.5, respectively. The efficiency of the constructed scheme is illustrated by numerical experiments.
@article{ZVMMF_2007_47_3_a8,
     author = {S. Li and G. I. Shishkin and L. P. Shishkina},
     title = {Approximation of the solution and its derivative for the singularly perturbed {Black{\textendash}Scholes} equation with nonsmooth initial data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {460--480},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/}
}
TY  - JOUR
AU  - S. Li
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 460
EP  - 480
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/
LA  - en
ID  - ZVMMF_2007_47_3_a8
ER  - 
%0 Journal Article
%A S. Li
%A G. I. Shishkin
%A L. P. Shishkina
%T Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 460-480
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/
%G en
%F ZVMMF_2007_47_3_a8
S. Li; G. I. Shishkin; L. P. Shishkina. Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 460-480. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a8/