Local search in problems with nonconvex constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 397-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonconvex optimization problems with an inequality constraint given by the difference of two convex functions (by a d.c. function) are considered. Two methods for finding local solutions to this problem are proposed that combine the solution of partially linearized problems and descent to a level surface of the d.c. function. The convergence of the methods is analyzed, and stopping criterions are proposed. The methods are compared by testing them in a numerical experiment.
@article{ZVMMF_2007_47_3_a3,
     author = {T. V. Gruzdeva and A. S. Strekalovskii},
     title = {Local search in problems with nonconvex constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {397--413},
     year = {2007},
     volume = {47},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a3/}
}
TY  - JOUR
AU  - T. V. Gruzdeva
AU  - A. S. Strekalovskii
TI  - Local search in problems with nonconvex constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 397
EP  - 413
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a3/
LA  - ru
ID  - ZVMMF_2007_47_3_a3
ER  - 
%0 Journal Article
%A T. V. Gruzdeva
%A A. S. Strekalovskii
%T Local search in problems with nonconvex constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 397-413
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a3/
%G ru
%F ZVMMF_2007_47_3_a3
T. V. Gruzdeva; A. S. Strekalovskii. Local search in problems with nonconvex constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 397-413. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a3/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[3] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo In-ta matem. i mekhan. UrO RAN, Ekaterinburg, 1998

[4] R. Horst, P. Pardalos (eds.), Handbook of global optimization, Kluwer Acad. Publs, Dordrecht, 1995 | MR

[5] Horst R., Tuy H., Global optimization (deterministic approaches), Springer, Berlin, 1993 | MR

[6] Strekalovskii A. C., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[7] Strekalovskii A. C., “Ob ekstremalnykh zadachakh s d.c.-ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1833–1843 | MR | Zbl

[8] Strekalovskii A. S., “O minimizatsii raznosti dvukh vypuklykh funktsii na dopustimom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 399–409 | MR | Zbl

[9] Strekalovskii A. C., “Minimiziruyuschie posledovatelnosti v zadachakh s d.c.-ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 435–447 | MR | Zbl

[10] Strekalovskii A. C., Yakovleva T. V., “O lokalnom i globalnom poiske v nevypuklykh zadachakh optimizatsii”, Avtomatika i telemekhan., 2004, no. 3, 23–34 | MR

[11] Strekalovskii A. C., Yakovleva T. V., “Modifikatsiya metoda Rozena v obratno-vypukloi zadache”, Izv. vuzov. Matem., 2005, no. 12, 70–75 | MR

[12] Zabotin V. I., Chernyaev Yu. A., “Obobschenie metoda proektsii gradienta na ekstremalnye zadachi s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 367–373 | MR | Zbl

[13] Rosen J. B., “Iterative solution of nonlinear optimal control problems”, J. SIAM Control, 4:1 (1966), 223–244 | DOI | MR | Zbl

[14] Meyer R. R., “The validity of a family of optimization methods”, J. SIAM Control, 8:1 (1970), 41–54 | DOI | MR | Zbl

[15] Motzkin T. S., Straus E. G., “Maxima for graphs and a new proof of a theorem of Turán”, Canad. J. Math., 17 (1965), 533–540 | MR | Zbl