Predicate description of universal constraints in the algebraic approach to pattern recognition problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 547-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using the algebraic approach to pattern recognition problems and the theory of local and universal constraints, universal constraints are described as sets of mappings that preserve $m$-place predicates. It is shown that symmetric and functional constraints admit a similar description.
@article{ZVMMF_2007_47_3_a14,
     author = {R. S. Takhanov},
     title = {Predicate description of universal constraints in the algebraic approach to pattern recognition problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {547--552},
     year = {2007},
     volume = {47},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/}
}
TY  - JOUR
AU  - R. S. Takhanov
TI  - Predicate description of universal constraints in the algebraic approach to pattern recognition problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 547
EP  - 552
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/
LA  - ru
ID  - ZVMMF_2007_47_3_a14
ER  - 
%0 Journal Article
%A R. S. Takhanov
%T Predicate description of universal constraints in the algebraic approach to pattern recognition problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 547-552
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/
%G ru
%F ZVMMF_2007_47_3_a14
R. S. Takhanov. Predicate description of universal constraints in the algebraic approach to pattern recognition problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 547-552. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/

[1] Rudakov K. V., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, v. 1, Nauka, M., 1989, 176–201 | MR

[2] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33 (1979), 5–68

[3] Rudakov K. V., “O simmetricheskikh i funktsionalnykh ogranicheniyakh dlya algoritmov klassifikatsii”, Dokl. AN SSSR, 297:1 (1987), 43–46 | MR