Predicate description of universal constraints in the algebraic approach to pattern recognition problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 547-552
Cet article a éte moissonné depuis la source Math-Net.Ru
By using the algebraic approach to pattern recognition problems and the theory of local and universal constraints, universal constraints are described as sets of mappings that preserve $m$-place predicates. It is shown that symmetric and functional constraints admit a similar description.
@article{ZVMMF_2007_47_3_a14,
author = {R. S. Takhanov},
title = {Predicate description of universal constraints in the algebraic approach to pattern recognition problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {547--552},
year = {2007},
volume = {47},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/}
}
TY - JOUR AU - R. S. Takhanov TI - Predicate description of universal constraints in the algebraic approach to pattern recognition problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 547 EP - 552 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/ LA - ru ID - ZVMMF_2007_47_3_a14 ER -
%0 Journal Article %A R. S. Takhanov %T Predicate description of universal constraints in the algebraic approach to pattern recognition problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 547-552 %V 47 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/ %G ru %F ZVMMF_2007_47_3_a14
R. S. Takhanov. Predicate description of universal constraints in the algebraic approach to pattern recognition problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 547-552. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a14/
[1] Rudakov K. V., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, v. 1, Nauka, M., 1989, 176–201 | MR
[2] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33 (1979), 5–68
[3] Rudakov K. V., “O simmetricheskikh i funktsionalnykh ogranicheniyakh dlya algoritmov klassifikatsii”, Dokl. AN SSSR, 297:1 (1987), 43–46 | MR