A method of local convex majorants for solving variational-like inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 355-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method based on convex approximations that locally majorize a gap function is proposed for solving a variational-like inequality. The algorithm is theoretically validated and the results of comparison of its numerical efficiency to that of the conventional methods are presented.
@article{ZVMMF_2007_47_3_a0,
     author = {E. A. Nurminski and N. B. Shamraǐ},
     title = {A~method of local convex majorants for solving variational-like inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {355--363},
     year = {2007},
     volume = {47},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a0/}
}
TY  - JOUR
AU  - E. A. Nurminski
AU  - N. B. Shamraǐ
TI  - A method of local convex majorants for solving variational-like inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 355
EP  - 363
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a0/
LA  - ru
ID  - ZVMMF_2007_47_3_a0
ER  - 
%0 Journal Article
%A E. A. Nurminski
%A N. B. Shamraǐ
%T A method of local convex majorants for solving variational-like inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 355-363
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a0/
%G ru
%F ZVMMF_2007_47_3_a0
E. A. Nurminski; N. B. Shamraǐ. A method of local convex majorants for solving variational-like inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_3_a0/

[1] Kinderleler D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M.

[2] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, Kurs lektsii, Izd-vo “DAS”, Kazan, 1998 | MR | Zbl

[3] Harker P. T., Pang J. S., “Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program. Ser. B, 48:2 (1990), 161–220 | DOI | MR | Zbl

[4] Popov L. D., Vvedenie v teoriyu, metody i ekonomicheskie prilozheniya zadach o dopolnitelnosti, Uchebnoe posobie, Izd-vo Uralskogo un-ta, Ekaterinburg, 2001

[5] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR

[6] Konnov I. V., “Kombinirovannyi relaksatsionnyi metod dlya obobschennykh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 2001, no. 12, 46–54 | MR | Zbl

[7] Konnov I. V., Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh zadach ravnovesiya”, Izv. vuzov. Matematika, 2003, no. 12, 71–77 | MR | Zbl

[8] Patriksson M., “A class of gap functions for variational inequalities”, Math. Program., 64:1–3 (1994), 53–79 | MR | Zbl

[9] Conn A. R., Gould N. I. M., Point Ph. L., Trust region methods, SIAM, Philadelphia, 2000 | MR

[10] Hypminskii E. A., Chislennye metody resheniya determinirovannykh i stokhasticheskikh minimaksnykh zadach, Nauk. dumka, Kiev, 1979 | MR

[11] Parida J., Sahoo M., Kumar A., “A variational-like inequality problem”, Bull. Austral. Math. Soc., 39 (1989), 225–231 | DOI | MR | Zbl

[12] Bulavskii B. A., Metody relaksatsii dlya sistem neravenstv, Uchebnoe posobie, NGU, Novosibirsk, 1981

[13] Shamrai N. B., “O dvukh podkhodakh k resheniyu sistem neravenstv”, Omskii nauch. vestn., 24:3 (2003), 55–57

[14] Shamrai N. B., “Proektivnyi metod dlya sistem neravenstv”, Dokl. AN VSh RF, 4:3 (2005), 36–43

[15] Shamrai N. B., “Primenenie variatsionno-podobnykh neravenstv dlya resheniya zadach transportnogo tsenovogo ravnovesiya”, Informatika i sistemy upravleniya, 11:1 (2006), 62–72

[16] Auchmurv G., “Variational principles for variational inequalities”, Numer. Funct. Analys. and Optimizat., 10:9-10 (1989), 863–874 | MR

[17] Zukhovitskii S. I., Polyak P. A., Primak M. E., “Dva metoda otyskaniya tochek ravnovesiya vognutykh igr $n$ lits”, Dokl. AN SSSR, 185:1 (1969), 24–27 | MR

[18] Demyanov V. F., Pevnyi A. B., “Chislennye metody otyskaniya sedlovykh tochek”, Zh. vychisl. matem. i matem. fiz., 12:5 (1972), 1099–1127

[19] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Program., 53:1 (1992), 99–110 | DOI | MR | Zbl

[20] Pshenichnyi B. H., Kalzhanov M. U., “Metod resheniya variatsionnykh neravenstv”, Kibernetika i sistem. analiz, 1992, no. 6, 48–55 | MR

[21] Stanford Business Software Inc. – [Elektronnyi resurs] http://www.sbsi-sol-optimize.com/asp/sol_product_minos.htm

[22] Octave Home Page – [Elektronnyi resurs] http://www.octave.org.

[23] Nurminskii E. A., “O metode otdelyayuschikh ploskostei s ogranichennoi pamyatyu”, Vychisl. metody i programmirovanie, 7 (2006), 133–137