Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 222-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we continue the analysis of alternating boundary layer type solutions to certain singularly perturbed parabolic equations for which the degenerate equations (obtained by setting small parameter multiplying derivatives equal to zero) are algebraic equations that have three roots. Here, we consider spatially one-dimensional equations. We address special cases where the following are true: (a) boundary conditions are of the Dirichlet type with different values of unknown functions specified at different endpoints of the interval of interest; (b) boundary conditions are of the Robin type with an appropriate power of a small parameter multiplying the derivative in the conditions. We emphasize a number of new features of alternating boundary layer type solutions that appear in these cases. One of the important applications of such equations is related to modeling certain types of bioswitches. Special choices of Dirichlet and Robin type boundary conditions can be used to tune up such bioswitches.
@article{ZVMMF_2007_47_2_a5,
     author = {A. B. Vasil'eva and L. V. Kalachev},
     title = {Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with {Dirichlet} and {Robin} boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {222--233},
     year = {2007},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a5/}
}
TY  - JOUR
AU  - A. B. Vasil'eva
AU  - L. V. Kalachev
TI  - Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 222
EP  - 233
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a5/
LA  - en
ID  - ZVMMF_2007_47_2_a5
ER  - 
%0 Journal Article
%A A. B. Vasil'eva
%A L. V. Kalachev
%T Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 222-233
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a5/
%G en
%F ZVMMF_2007_47_2_a5
A. B. Vasil'eva; L. V. Kalachev. Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 222-233. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a5/

[1] A. B. Vasil'eva and L. V. Kalachev, “Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions”, Abstract and Applied Analysis, 2006 (2006), Article ID 52856, 21 pp. | MR

[2] A. Okubo and S. A. Levin, Diffusion and Ecological Problems, Springer-Verlag, New York, Berlin, Heidelberg, 2001 | MR | Zbl

[3] J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, Berlin, Heidelberg, 1998 | MR | Zbl

[4] J. D. Murray, Mathematical Biology, Springer-Verlag, New York, Berlin, Heidelberg, 1993 | MR

[5] A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM Studies in Appl. Math., SIAM, Philadelphia, 1995 | MR

[6] N. N. Nefedov, “An asymptotic method of differential inequalities for investigation of periodic contrast structures: existence, asymptotics, and stability”, Differ. Equations, 36 (2000), 298–305 | DOI | MR | Zbl

[7] A. B. Vasileva, “Contrast structures of alternating type”, J. Math. Sciences, 121:1 (2003), 932–943 | MR