@article{ZVMMF_2007_47_2_a3,
author = {Yu. V. Bychenkov},
title = {On the spectral properties of an operator pencil},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {197--205},
year = {2007},
volume = {47},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/}
}
Yu. V. Bychenkov. On the spectral properties of an operator pencil. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/
[1] Benzi M., Golub G. H., Liesen J., “Numerical solution of saddle point problems”, Acta Numer., 14 (2005), 1–137 | DOI | MR | Zbl
[2] Zulehner W., “Analysis of iterative methods for saddle point problems: a unified approach”, Math. Comput., 71:238 (2002), 479–505 | MR | Zbl
[3] Chizhonkov E. B., “Ob odnom obobschennom relaksatsionnom metode resheniya lineinykh zadach s sedlovym operatorom”, Matem. modelirovanie, 13:12 (2001), 107–114 | MR | Zbl
[4] Chizhonkov E. V., “Ob uskorenii skhodimosti metoda Lantsosha pri reshenii algebraicheskikh sistem s sedlovoi tochkoi”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 504–513 | MR | Zbl
[5] Gorelova M. V., Chizhonkov E. V., “O reshenii sedlovykh zadach metodami s modelnymi sedlovymi operatorami na verkhnem sloe”, Izv. vuzov. Matematika, 2003, no. 8, 19–27 | MR | Zbl
[6] Henrici P., Applied and computational complex analysis, v. 1, John Wiley Sons Inc., New York, 1988 | MR | Zbl
[7] Bychenkov Yu. V., “Optimization of one class of nonsymmetrizable algorithms for saddle point problems”, Rus. J. Numer. Analys. and Math. Modeling, 17:6 (2002), 521–546 | MR | Zbl