On the spectral properties of an operator pencil
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 197-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a broad class of iterative algorithms for solving saddle point problems, the study of the convergence and of the optimal properties can be reduced to an analysis of the eigenvalues of operator pencils of a special form. A new approach to analyzing spectral properties of pencils of this kind is proposed that makes it possible to obtain sharp estimates for the convergence rate.
@article{ZVMMF_2007_47_2_a3,
     author = {Yu. V. Bychenkov},
     title = {On the spectral properties of an operator pencil},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {197--205},
     year = {2007},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/}
}
TY  - JOUR
AU  - Yu. V. Bychenkov
TI  - On the spectral properties of an operator pencil
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 197
EP  - 205
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/
LA  - ru
ID  - ZVMMF_2007_47_2_a3
ER  - 
%0 Journal Article
%A Yu. V. Bychenkov
%T On the spectral properties of an operator pencil
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 197-205
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/
%G ru
%F ZVMMF_2007_47_2_a3
Yu. V. Bychenkov. On the spectral properties of an operator pencil. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a3/

[1] Benzi M., Golub G. H., Liesen J., “Numerical solution of saddle point problems”, Acta Numer., 14 (2005), 1–137 | DOI | MR | Zbl

[2] Zulehner W., “Analysis of iterative methods for saddle point problems: a unified approach”, Math. Comput., 71:238 (2002), 479–505 | MR | Zbl

[3] Chizhonkov E. B., “Ob odnom obobschennom relaksatsionnom metode resheniya lineinykh zadach s sedlovym operatorom”, Matem. modelirovanie, 13:12 (2001), 107–114 | MR | Zbl

[4] Chizhonkov E. V., “Ob uskorenii skhodimosti metoda Lantsosha pri reshenii algebraicheskikh sistem s sedlovoi tochkoi”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 504–513 | MR | Zbl

[5] Gorelova M. V., Chizhonkov E. V., “O reshenii sedlovykh zadach metodami s modelnymi sedlovymi operatorami na verkhnem sloe”, Izv. vuzov. Matematika, 2003, no. 8, 19–27 | MR | Zbl

[6] Henrici P., Applied and computational complex analysis, v. 1, John Wiley Sons Inc., New York, 1988 | MR | Zbl

[7] Bychenkov Yu. V., “Optimization of one class of nonsymmetrizable algorithms for saddle point problems”, Rus. J. Numer. Analys. and Math. Modeling, 17:6 (2002), 521–546 | MR | Zbl