First-order methods for certain quasi-variational inequalities in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 189-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are obtained for quasi-variational inequalities of a special type with nonlinear operators in a Hilbert space to be uniquely solvable. A first-order continuous method and its discrete variant are constructed for inequalities of this kind. The strong convergence of these methods is proved.
@article{ZVMMF_2007_47_2_a2,
     author = {I. P. Ryazantseva},
     title = {First-order methods for certain quasi-variational inequalities in {a~Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {189--196},
     year = {2007},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a2/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - First-order methods for certain quasi-variational inequalities in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 189
EP  - 196
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a2/
LA  - ru
ID  - ZVMMF_2007_47_2_a2
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T First-order methods for certain quasi-variational inequalities in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 189-196
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a2/
%G ru
%F ZVMMF_2007_47_2_a2
I. P. Ryazantseva. First-order methods for certain quasi-variational inequalities in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 189-196. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a2/

[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[2] Noor M. A., “The quasi-complementarity problem”, J. Math. Analys. and Appl., 130:2 (1988), 344–353 | DOI | Zbl

[3] Siddiqi A. H., Ansari Q. H., “Strongly nonlinear quasivariational inequalities”, J. Math. Analys. and Appl., 149:2 (1990), 444–450 | DOI | MR | Zbl

[4] Siddiqi A. H., Ansari Q. H., “General strongly nonlinear variational inequalities”, J. Math. Analys. and Appl., 166:2 (1992), 386–392 | DOI | MR | Zbl

[5] Browder F. E., Hess P., “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Analys., 11:3 (1972), 251–294 | DOI | MR | Zbl

[6] Alber Ya., Ryazantseva I., Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006 | MR

[7] Browder F. E., “Fixed-point theorems for noncompact mappings in Hilbert space”, Proc. Nat. Acad. Sci. U.S.A., 53:6 (1965), 1272–1276 | DOI | MR | Zbl

[8] Antipin A. C., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchn. sovet po kompleksnoi probl. “Kibernetika” AN SSSR, M., 1989, 5–43 | MR

[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[10] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1988 | MR

[11] Apartsin A. C., “K postroeniyu skhodyaschikhsya iteratsionnykh protsessov v gilbertovom prostranstve”, Tr. po prikl. matem. i kibernetike, Irkutsk, 1972, 7–14

[12] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Uralskaya izdat. firma “Nauka”, Ekaterinburg, 1993 | MR

[13] Amochkina T. V., Antipin A. C., Vasilev F. P., “Nepreryvnyi metod linearizatsii s peremennoi metrikoi dlya zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1459–1466 | MR | Zbl

[14] Ryazantseva I. P., “Nepreryvnye i iterativnye metody pervogo poryadka s operatorom obobschennogo proektirovaniya dlya monotonnykh variatsionnykh neravenstv v banakhovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 400–410 | MR | Zbl

[15] Alber Ya. I., “A new approach to investigation of evolution differential equations in Banach space”, Nonlinear. Analys., Theory, Meth. and Appl., 23:9 (1994), 1115–1134 | DOI | MR | Zbl

[16] Rockafellar R. T., “Monotone operator and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl

[17] Antipin A. C., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl

[18] Antipin A. C., “Reshenie variatsionnykh neravenstv so svyazannymi ogranicheniyami s pomoschyu differentsialnykh uravnenii”, Differents. ur-niya, 36:11 (2000), 1443–1451 | MR | Zbl

[19] Antipin A. C., Vasilev F. P., “Metody regulyarizatsii dlya resheniya neustoichivykh zadach ravnovesnogo programmirovaniya so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 27–40 | MR | Zbl