Variational statement of deformation problems for a composite latticed plate with various types of lattices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 321-337
Cet article a éte moissonné depuis la source Math-Net.Ru
The variational statement of various boundary value problems for tangential displacements and forces in a latticed plate with an arbitrary piecewise smooth contour is investigated. The lattice consists of several families of bars made of a homogeneous composite material with a matrix of relatively low shear stiffness. The energy method reduces the problem to the variational problem of minimizing the energy functional. The conditions on the plate contour are established under which the functional is minimal and positive definite, which ensures that the problem is well posed.
@article{ZVMMF_2007_47_2_a13,
author = {L. S. Klabukova},
title = {Variational statement of deformation problems for a~composite latticed plate with various types of lattices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {321--337},
year = {2007},
volume = {47},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a13/}
}
TY - JOUR AU - L. S. Klabukova TI - Variational statement of deformation problems for a composite latticed plate with various types of lattices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 321 EP - 337 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a13/ LA - ru ID - ZVMMF_2007_47_2_a13 ER -
%0 Journal Article %A L. S. Klabukova %T Variational statement of deformation problems for a composite latticed plate with various types of lattices %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 321-337 %V 47 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a13/ %G ru %F ZVMMF_2007_47_2_a13
L. S. Klabukova. Variational statement of deformation problems for a composite latticed plate with various types of lattices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 321-337. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a13/
[1] Pshenichnov G. J., A theory of latticed plates and shell, Word Scient., Singapur etc., 1993 | MR | Zbl
[2] Pshenichnov G. I., Teoriya tonkikh uprugikh setchatykh obolochek i plastinok, Nauka, M., 1982
[3] Skorikov A. B., Yakovleva E. A., “Izgib pryamougolnoi plastiny s uprugim konturom”, Soobsch. po prikl. matem., VTs RAN, M., 1995
[4] Klabukova L. S., “Issledovanie i priblizhennyi metod resheniya kraevykh zadach o poperechnom izgibe setchatoi plastinki”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 282–294 | MR | Zbl
[5] Klabukova L. S., “Variatsionnaya postanovka zadach o poperechnom izgibe setchatoi plastinki iz kompozitsionnogo materiala”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 295–307 | MR | Zbl