Lift maximization in the flow around a contour over a screen
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 302-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of lift maximization for a smooth contour of given length placed in a flow near a screen is analyzed. The distance between the contour and the screen is assumed to be given. Optimal contours are constructed, and the lift coefficient is derived as a function of the contour-screen separation. The results can be useful as accurate upper bounds for the lift coefficient of actual ekranoplan airfoils.
@article{ZVMMF_2007_47_2_a11,
     author = {D. F. Abzalilov},
     title = {Lift maximization in the flow around a~contour over a~screen},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {302--309},
     year = {2007},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a11/}
}
TY  - JOUR
AU  - D. F. Abzalilov
TI  - Lift maximization in the flow around a contour over a screen
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 302
EP  - 309
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a11/
LA  - ru
ID  - ZVMMF_2007_47_2_a11
ER  - 
%0 Journal Article
%A D. F. Abzalilov
%T Lift maximization in the flow around a contour over a screen
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 302-309
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a11/
%G ru
%F ZVMMF_2007_47_2_a11
D. F. Abzalilov. Lift maximization in the flow around a contour over a screen. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 2, pp. 302-309. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_2_a11/

[1] Zubov V. I., “K voprosu ob optimalnom profile kryla v potoke idealnoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 241–245 | MR | Zbl

[2] Elizarov A. M., “Nekotorye ekstremalnye zadachi teorii kryla”, Izv. vuzov. Matematika, 1988, no. 10, 71–74 | MR

[3] Leontev V. G., Potashev A. B., Obobschenie zadachi M. A. Lavrenteva ob optimalnoi po koeffitsientu pod'emnoi sily duzhki vblizi ekrana, OAO “OKB Sukhogo”, M., 2002

[4] Elizarov A. M., Ikhsanova A. N., Fokin D. A., “Chislennaya optimizatsiya formy kryla ekranoplana metodami teorii variatsionnykh obratnykh kraevykh zadach”, Obozrenie prikl. i prom. matem., 8:1 (2001), 165–167 | MR

[5] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1966 | MR

[6] Akhiezer H. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[7] Woods L. C., “Compressible subsonic flow in two-dimensional channels with mixed boundary conditions”, Quart. J. Mech. and Appl. Math., 7:3 (1954), 263–282 | DOI | MR | Zbl