Numerical integration of systems of delay differential-algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 83-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical solution of the initial value problem for a system of delay differential-algebraic equations is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are obtained for transforming this problem to the best argument, which ensures the best condition for the corresponding system of continuation equations. The best argument is the arc length along the integral curve of the problem. Algorithms and programs based on the continuous and discrete continuation methods are developed for the numerical integration of this problem. The efficiency of the suggested transformation is demonstrated using test examples.
@article{ZVMMF_2007_47_1_a8,
     author = {E. B. Kuznetsov and V. N. Mikryukov},
     title = {Numerical integration of systems of delay differential-algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {83--95},
     year = {2007},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a8/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - V. N. Mikryukov
TI  - Numerical integration of systems of delay differential-algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 83
EP  - 95
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a8/
LA  - ru
ID  - ZVMMF_2007_47_1_a8
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A V. N. Mikryukov
%T Numerical integration of systems of delay differential-algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 83-95
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a8/
%G ru
%F ZVMMF_2007_47_1_a8
E. B. Kuznetsov; V. N. Mikryukov. Numerical integration of systems of delay differential-algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a8/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Kuznetsov E. B., Shalashilin V. I., “Reshenie differentsialno-algebraicheskikh uravnenii s vyborom nailuchshego argumenta”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 711–722 | MR | Zbl

[3] Kuznetsov E. B., Shalashilin V. I., “Reshenie differentsialno-algebraicheskikh uravnenii metodom prodolzheniya po nailuchshemu parametru”, Differents. ur-niya, 35:3 (1999), 379–387 | MR | Zbl

[4] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[5] Kim A. B., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Izd-vo PXD R Dynamics, Izhevsk, 2004

[6] Kuznetsov E. B., “Preobrazovanie uravnenii s zapazdyvayuschimi argumentom k nailuchshemu argumentu”, Matem. zametki, 63:1 (1998), 62–68 | MR | Zbl

[7] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[8] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl

[9] Davidenko D. F., “O priblizhennom reshenii sistem nelineinykh uravnenii”, Ukr. matem. zhurnal, 5:2 (1953), 196–206 | MR | Zbl

[10] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[11] Feldstein A., Neves K. W., “High order methods for state-dependent delay differential equation with nonsmooth solutions”, SIAM J. Numer. Analys., 21 (1984), 844–863 | DOI | MR | Zbl

[12] Bakhvalov H. S., Zhidkov H. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[13] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compt. rend. hebdomataires des seances de L'Acad. sci., 198:21 (1934.), 1840–1842

[14] Lahaye M. E., “Solution of system of transcendental equations”, Acad. Roy. Belgique. Bull. Cl. Sci., 5 (1948), 805–822

[15] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivoi iteratsionnym metodom”, Dokl. RAN, 396:6 (2004), 746–748 | MR | Zbl

[16] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl

[17] Kamenskii G. A., “Obschaya teoriya uravnenii s otklonyayuschimsya argumentom”, Dokl. AN SSSR, 120:4 (1958), 697–700 | MR