@article{ZVMMF_2007_47_1_a5,
author = {D. S. Dzhumabaev and S. M. Temesheva},
title = {A~parametrization method for solving nonlinear two-point boundary value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {39--63},
year = {2007},
volume = {47},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/}
}
TY - JOUR AU - D. S. Dzhumabaev AU - S. M. Temesheva TI - A parametrization method for solving nonlinear two-point boundary value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 39 EP - 63 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/ LA - ru ID - ZVMMF_2007_47_1_a5 ER -
%0 Journal Article %A D. S. Dzhumabaev %A S. M. Temesheva %T A parametrization method for solving nonlinear two-point boundary value problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 39-63 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/ %G ru %F ZVMMF_2007_47_1_a5
D. S. Dzhumabaev; S. M. Temesheva. A parametrization method for solving nonlinear two-point boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 39-63. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/
[1] Shamanskii V. E., Metody chislennogo resheniya kraevykh zadach na ETsVM, Ch. 1, Nauk. dumka, Kiev, 1963
[2] Bellman R., Kalaba R., Kvazilinearizatsiya i nelineinye kraevye zadachi, Mir, M., 1968 | Zbl
[3] Keller H. B., Numerical methods for two-point boundary-value problems, Walthan, Blaisdell, 1968 | MR | Zbl
[4] Roberts S. M., Shipman J. S., Two-point boundary-value problems: Shooting methods, Elsevier, N.Y., 1972 | MR
[5] Bakhvalov N. S., Chislennye metody, Fizmatgiz, M., 1973
[6] Keller H. B., White A. B., “Difference methods for boundary value problems in ordinary differential equations”, SIAM J. Numer. Analys., 12:5 (1975), 791–802 | DOI | MR | Zbl
[7] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979
[8] Monastyrnyi P. I., “O skhodimosti metoda intervalnoi pristrelki”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1139–1145 | MR | Zbl
[9] Monastyrnyi P. I., “O svyazi izolirovannosti reshenii so skhodimostyu metodov pristrelki”, Differents. ur-niya, 16:4 (1980), 732–740 | MR
[10] Nesterenko L. I., “O suschestvovanii i edinstvennosti resheniya dvukhtochechnoi granichnoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii”, Nelineinye kraevye zadachi, In-t matem. AN USSR, Kiev, 1980
[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR
[12] Kiguradze I. T., “Kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Sovrem. probl. matem. Noveishie dostizheniya, 30, VINITI AN SSSR, M., 1987, 3–103 | MR
[13] Samoilenko A. M., Ronto H. I., Chislenno-analiticheskie metody issledovaniya reshenii kraevykh zadach, Nauk. dumka, Kiev, 1986 | MR
[14] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 50–66 | MR | Zbl
[15] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR
[16] Dzhumabaev D. S., “Skhodimost iteratsionnykh metodov dlya neogranichennykh operatornykh uravnenii”, Matem. zametki, 41:5 (1987), 637–645 | MR
[17] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl