A parametrization method for solving nonlinear two-point boundary value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 39-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.
@article{ZVMMF_2007_47_1_a5,
     author = {D. S. Dzhumabaev and S. M. Temesheva},
     title = {A~parametrization method for solving nonlinear two-point boundary value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {39--63},
     year = {2007},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/}
}
TY  - JOUR
AU  - D. S. Dzhumabaev
AU  - S. M. Temesheva
TI  - A parametrization method for solving nonlinear two-point boundary value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 39
EP  - 63
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/
LA  - ru
ID  - ZVMMF_2007_47_1_a5
ER  - 
%0 Journal Article
%A D. S. Dzhumabaev
%A S. M. Temesheva
%T A parametrization method for solving nonlinear two-point boundary value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 39-63
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/
%G ru
%F ZVMMF_2007_47_1_a5
D. S. Dzhumabaev; S. M. Temesheva. A parametrization method for solving nonlinear two-point boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 39-63. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a5/

[1] Shamanskii V. E., Metody chislennogo resheniya kraevykh zadach na ETsVM, Ch. 1, Nauk. dumka, Kiev, 1963

[2] Bellman R., Kalaba R., Kvazilinearizatsiya i nelineinye kraevye zadachi, Mir, M., 1968 | Zbl

[3] Keller H. B., Numerical methods for two-point boundary-value problems, Walthan, Blaisdell, 1968 | MR | Zbl

[4] Roberts S. M., Shipman J. S., Two-point boundary-value problems: Shooting methods, Elsevier, N.Y., 1972 | MR

[5] Bakhvalov N. S., Chislennye metody, Fizmatgiz, M., 1973

[6] Keller H. B., White A. B., “Difference methods for boundary value problems in ordinary differential equations”, SIAM J. Numer. Analys., 12:5 (1975), 791–802 | DOI | MR | Zbl

[7] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[8] Monastyrnyi P. I., “O skhodimosti metoda intervalnoi pristrelki”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1139–1145 | MR | Zbl

[9] Monastyrnyi P. I., “O svyazi izolirovannosti reshenii so skhodimostyu metodov pristrelki”, Differents. ur-niya, 16:4 (1980), 732–740 | MR

[10] Nesterenko L. I., “O suschestvovanii i edinstvennosti resheniya dvukhtochechnoi granichnoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii”, Nelineinye kraevye zadachi, In-t matem. AN USSR, Kiev, 1980

[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[12] Kiguradze I. T., “Kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Sovrem. probl. matem. Noveishie dostizheniya, 30, VINITI AN SSSR, M., 1987, 3–103 | MR

[13] Samoilenko A. M., Ronto H. I., Chislenno-analiticheskie metody issledovaniya reshenii kraevykh zadach, Nauk. dumka, Kiev, 1986 | MR

[14] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 50–66 | MR | Zbl

[15] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[16] Dzhumabaev D. S., “Skhodimost iteratsionnykh metodov dlya neogranichennykh operatornykh uravnenii”, Matem. zametki, 41:5 (1987), 637–645 | MR

[17] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl