Numerical study of the interaction between shocks and rarefaction waves in an ideal gas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 155-161

Voir la notice de l'article provenant de la source Math-Net.Ru

The interaction between shock waves and rarefaction waves is numerically studied using the one-dimensional Euler equations for an ideal gas. A specific form of solutions, which are called contact regions, is detected. They represent extended zones with continuously varying density and temperature at constant pressure and velocity. It is shown that, at long times, the solutions to the interaction problem tend to those to the Riemann problems with the contact discontinuity replaced by a contact region.
@article{ZVMMF_2007_47_1_a14,
     author = {S. P. Popov},
     title = {Numerical study of the interaction between shocks and rarefaction waves in an ideal gas},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a14/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Numerical study of the interaction between shocks and rarefaction waves in an ideal gas
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 155
EP  - 161
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a14/
LA  - ru
ID  - ZVMMF_2007_47_1_a14
ER  - 
%0 Journal Article
%A S. P. Popov
%T Numerical study of the interaction between shocks and rarefaction waves in an ideal gas
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 155-161
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a14/
%G ru
%F ZVMMF_2007_47_1_a14
S. P. Popov. Numerical study of the interaction between shocks and rarefaction waves in an ideal gas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 155-161. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a14/