On the construction of interpolation mesh surfaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 11-15
Cet article a éte moissonné depuis la source Math-Net.Ru
A method for constructing two-dimensional interpolation mesh functions is proposed that is more flexible than the classical cubic spline method because it makes it possible to construct interpolation surfaces that fit the given function at specified points by varying certain parameters. The method is relatively simple and is well suited for practical implementation.
@article{ZVMMF_2007_47_1_a1,
author = {V. A. Lyul'ka and I. E. Mikhaǐlov and B. N. Tyumnev},
title = {On the construction of interpolation mesh surfaces},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {11--15},
year = {2007},
volume = {47},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a1/}
}
TY - JOUR AU - V. A. Lyul'ka AU - I. E. Mikhaǐlov AU - B. N. Tyumnev TI - On the construction of interpolation mesh surfaces JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 11 EP - 15 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a1/ LA - ru ID - ZVMMF_2007_47_1_a1 ER -
V. A. Lyul'ka; I. E. Mikhaǐlov; B. N. Tyumnev. On the construction of interpolation mesh surfaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 11-15. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a1/
[1] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[2] Lyulka V. A., Romanko A. B., “Postroenie interpolyatsionnykh krivykh metodom setok”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 827–836 | MR
[3] Lyulka V. A., Mikhailov I. E., “O postroenii interpolyatsionnykh krivykh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1448–1450 | MR