Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class of regularized Gauss–Newton methods for solving inexactly specified irregular nonlinear equations is examined under the condition that additive perturbations of the operator in the problem are close to zero only in the weak topology. By analogy with the well-understood conventional situation where the perturbed and exact operators are close in norm, a stopping criterion is constructed ensuring that the approximate solution is adequate to the errors in the operator.
@article{ZVMMF_2007_47_1_a0,
     author = {M. Yu. Kokurin},
     title = {Stable approximation of solutions to irregular nonlinear operator equations in {a~Hilbert} space under large noise},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--10},
     year = {2007},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a0/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 3
EP  - 10
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a0/
LA  - ru
ID  - ZVMMF_2007_47_1_a0
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 3-10
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a0/
%G ru
%F ZVMMF_2007_47_1_a0
M. Yu. Kokurin. Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_1_a0/

[1] Bakushinskii A. B., Goncharskii A. B., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[3] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000

[4] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[5] Morozov V. A., “Regulyarizatsiya pri bolshikh pomekhakh”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 13–21 | MR | Zbl

[6] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[7] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[8] Kokurin M. Yu., “Stable iteratively regularized gradient method for nonlinear irregular equations under large noise”, Inverse Problems, 22:1 (2006), 197–207 | DOI | MR | Zbl