Piecewise parabolic method on local stencil for gasdynamic simulations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2055-2075 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method based on piecewise parabolic difference approximations is proposed for solving hyperbolic systems of equations. The design of its numerical scheme is based on the conservation of Riemann invariants along the characteristic curves of a system of equations, which makes it possible to discard the four-point interpolation procedure used in the standard piecewise parabolic method (PPM) and to use the data from the previous time level in the reconstruction of the solution inside difference cells. As a result, discontinuous solutions can be accurately represented without adding excessive dissipation. A local stencil is also convenient for computations on adaptive meshes. The new method is compared with PPM by solving test problems for the linear advection equation and the inviscid Burgers equation. The efficiency of the methods is compared in terms of errors in various norms. A technique for solving the gas dynamics equations is described and tested for several one-and two-dimensional problems.
@article{ZVMMF_2007_47_12_a7,
     author = {M. V. Popov and S. D. Ustyugov},
     title = {Piecewise parabolic method on local stencil for gasdynamic simulations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2055--2075},
     year = {2007},
     volume = {47},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/}
}
TY  - JOUR
AU  - M. V. Popov
AU  - S. D. Ustyugov
TI  - Piecewise parabolic method on local stencil for gasdynamic simulations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 2055
EP  - 2075
VL  - 47
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/
LA  - ru
ID  - ZVMMF_2007_47_12_a7
ER  - 
%0 Journal Article
%A M. V. Popov
%A S. D. Ustyugov
%T Piecewise parabolic method on local stencil for gasdynamic simulations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 2055-2075
%V 47
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/
%G ru
%F ZVMMF_2007_47_12_a7
M. V. Popov; S. D. Ustyugov. Piecewise parabolic method on local stencil for gasdynamic simulations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2055-2075. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/

[1] Collela P., Woodward P., “The piecewise parabolic method for gas-dynamical simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI

[2] van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme”, J. Comput. Phys., 14 (1974), 361–370 | DOI | Zbl

[3] Guinot V., “High resolution Godunov-type schemes with small stencils”, Internat. J. Numer. Meth. Fluids, 44 (2004), 1119–1162 | DOI | MR | Zbl

[4] Suresh A., Huynh H. T., “Accurate monotonicity-preserving schemes with Runge–Kutta time stepping”, J. Comput. Phys., 136 (1997), 83–99 | DOI | MR | Zbl

[5] Galanin M. P., Elenina T. G., Sravnitelnyi analiz raznostnykh skhem dlya lineinogo uravneniya perenosa, Preprint No 52, IPMatem. RAN, M., 1998, 33 pp.

[6] Galanin M. P., Elenina T. G., Testirovanie raznostnykh skhem dlya lineinogo uravneniya perenosa, Preprint No 40, IPMatem. RAN, M., 1999, 42 pp.

[7] Yang H. Q., Przekwas A. J., “A comparative study of advanced shock-capturing schemes applied to Burgers' equation”, J. Comput. Phys., 102 (1992), 139–159 | DOI | MR | Zbl

[8] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[9] Sod G. A., “A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl

[10] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[11] Shu C.-W., “Numerical experiments on the accuracy of ENO and modified ENO schemes”, J. Sci. Comput., 5 (1990), 127–149 | DOI | Zbl

[12] Woodward P., Collela P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl

[13] Schulz-Rinne C. W., Collins J. P., Glaz H. M., “Numerical solution of the Riemann problem for two-dimensional gas dynamics”, SIAM J. Sci. Comput., 14 (1993), 1394–1414 | DOI | MR | Zbl

[14] Collela P., “Multidimensional upwind methods for hyperbolic conservation laws”, J. Comput. Phys., 87 (1990), 171–200 | DOI | MR

[15] Quirk J. J., “A contribution to the sreat Riemann solver debate”, Internat. J. Numer. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl