@article{ZVMMF_2007_47_12_a7,
author = {M. V. Popov and S. D. Ustyugov},
title = {Piecewise parabolic method on local stencil for gasdynamic simulations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2055--2075},
year = {2007},
volume = {47},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/}
}
TY - JOUR AU - M. V. Popov AU - S. D. Ustyugov TI - Piecewise parabolic method on local stencil for gasdynamic simulations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 2055 EP - 2075 VL - 47 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/ LA - ru ID - ZVMMF_2007_47_12_a7 ER -
%0 Journal Article %A M. V. Popov %A S. D. Ustyugov %T Piecewise parabolic method on local stencil for gasdynamic simulations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 2055-2075 %V 47 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/ %G ru %F ZVMMF_2007_47_12_a7
M. V. Popov; S. D. Ustyugov. Piecewise parabolic method on local stencil for gasdynamic simulations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2055-2075. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a7/
[1] Collela P., Woodward P., “The piecewise parabolic method for gas-dynamical simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI
[2] van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme”, J. Comput. Phys., 14 (1974), 361–370 | DOI | Zbl
[3] Guinot V., “High resolution Godunov-type schemes with small stencils”, Internat. J. Numer. Meth. Fluids, 44 (2004), 1119–1162 | DOI | MR | Zbl
[4] Suresh A., Huynh H. T., “Accurate monotonicity-preserving schemes with Runge–Kutta time stepping”, J. Comput. Phys., 136 (1997), 83–99 | DOI | MR | Zbl
[5] Galanin M. P., Elenina T. G., Sravnitelnyi analiz raznostnykh skhem dlya lineinogo uravneniya perenosa, Preprint No 52, IPMatem. RAN, M., 1998, 33 pp.
[6] Galanin M. P., Elenina T. G., Testirovanie raznostnykh skhem dlya lineinogo uravneniya perenosa, Preprint No 40, IPMatem. RAN, M., 1999, 42 pp.
[7] Yang H. Q., Przekwas A. J., “A comparative study of advanced shock-capturing schemes applied to Burgers' equation”, J. Comput. Phys., 102 (1992), 139–159 | DOI | MR | Zbl
[8] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl
[9] Sod G. A., “A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl
[10] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[11] Shu C.-W., “Numerical experiments on the accuracy of ENO and modified ENO schemes”, J. Sci. Comput., 5 (1990), 127–149 | DOI | Zbl
[12] Woodward P., Collela P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl
[13] Schulz-Rinne C. W., Collins J. P., Glaz H. M., “Numerical solution of the Riemann problem for two-dimensional gas dynamics”, SIAM J. Sci. Comput., 14 (1993), 1394–1414 | DOI | MR | Zbl
[14] Collela P., “Multidimensional upwind methods for hyperbolic conservation laws”, J. Comput. Phys., 87 (1990), 171–200 | DOI | MR
[15] Quirk J. J., “A contribution to the sreat Riemann solver debate”, Internat. J. Numer. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl