Duality scheme for solving the semicoercive signorini problem with friction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2023-2036 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The iterative Uzawa method with a modified Lagrangian functional is used to numerically solve the semicoercive Signorini problem with friction (quasi-variational inequality).
@article{ZVMMF_2007_47_12_a5,
     author = {E. M. Vikhtenko and R. V. Namm},
     title = {Duality scheme for solving the semicoercive signorini problem with friction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2023--2036},
     year = {2007},
     volume = {47},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a5/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
TI  - Duality scheme for solving the semicoercive signorini problem with friction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 2023
EP  - 2036
VL  - 47
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a5/
LA  - ru
ID  - ZVMMF_2007_47_12_a5
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%T Duality scheme for solving the semicoercive signorini problem with friction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 2023-2036
%V 47
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a5/
%G ru
%F ZVMMF_2007_47_12_a5
E. M. Vikhtenko; R. V. Namm. Duality scheme for solving the semicoercive signorini problem with friction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2023-2036. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a5/

[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[2] Kikuchi N., Oden J. T., Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl

[3] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[4] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[5] By G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl

[6] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[7] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | Zbl

[8] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Nauka, M., 1980 | MR

[10] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR