On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2014-2022
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the $g$-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.
            
            
            
          
        
      @article{ZVMMF_2007_47_12_a4,
     author = {I. P. Antipin and A. Z. Ishmukhametov and Yu. G. Karyukina},
     title = {On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2014--2022},
     publisher = {mathdoc},
     volume = {47},
     number = {12},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/}
}
                      
                      
                    TY - JOUR AU - I. P. Antipin AU - A. Z. Ishmukhametov AU - Yu. G. Karyukina TI - On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 2014 EP - 2022 VL - 47 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/ LA - ru ID - ZVMMF_2007_47_12_a4 ER -
%0 Journal Article %A I. P. Antipin %A A. Z. Ishmukhametov %A Yu. G. Karyukina %T On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 2014-2022 %V 47 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/ %G ru %F ZVMMF_2007_47_12_a4
I. P. Antipin; A. Z. Ishmukhametov; Yu. G. Karyukina. On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2014-2022. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/
