On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2014-2022

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the $g$-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.
@article{ZVMMF_2007_47_12_a4,
     author = {I. P. Antipin and A. Z. Ishmukhametov and Yu. G. Karyukina},
     title = {On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2014--2022},
     publisher = {mathdoc},
     volume = {47},
     number = {12},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/}
}
TY  - JOUR
AU  - I. P. Antipin
AU  - A. Z. Ishmukhametov
AU  - Yu. G. Karyukina
TI  - On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 2014
EP  - 2022
VL  - 47
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/
LA  - ru
ID  - ZVMMF_2007_47_12_a4
ER  - 
%0 Journal Article
%A I. P. Antipin
%A A. Z. Ishmukhametov
%A Yu. G. Karyukina
%T On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 2014-2022
%V 47
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/
%G ru
%F ZVMMF_2007_47_12_a4
I. P. Antipin; A. Z. Ishmukhametov; Yu. G. Karyukina. On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 2014-2022. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a4/