Finding a complete set of solutions or proving unsolvability for certain classes of matrix polynomial equations with commuting coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 1988-1997 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two classes of matrix polynomial equations with commuting coefficients are examined. It is shown that the equations in one class have complete sets of solutions, whereas the equations in the other class are unsolvable. A method is given for finding the solution set of an equation in the former class.
@article{ZVMMF_2007_47_12_a2,
     author = {B. Z. Shavarovskii},
     title = {Finding a~complete set of solutions or proving unsolvability for certain classes of matrix polynomial equations with commuting coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1988--1997},
     year = {2007},
     volume = {47},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a2/}
}
TY  - JOUR
AU  - B. Z. Shavarovskii
TI  - Finding a complete set of solutions or proving unsolvability for certain classes of matrix polynomial equations with commuting coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1988
EP  - 1997
VL  - 47
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a2/
LA  - ru
ID  - ZVMMF_2007_47_12_a2
ER  - 
%0 Journal Article
%A B. Z. Shavarovskii
%T Finding a complete set of solutions or proving unsolvability for certain classes of matrix polynomial equations with commuting coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1988-1997
%V 47
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a2/
%G ru
%F ZVMMF_2007_47_12_a2
B. Z. Shavarovskii. Finding a complete set of solutions or proving unsolvability for certain classes of matrix polynomial equations with commuting coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 12, pp. 1988-1997. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_12_a2/

[1] Kozlov V. V., “Lineinye sistemy s kvadratichnym integralom i simplekticheskaya geometriya prostranstv Artina”, Prikl. matem. i mekhan., 68:3 (2004), 371–383 | MR | Zbl

[2] Kozlov V. V., “Ogranicheniya kvadratichnykh form na lagranzhevy ploskosti, kvadratnye matrichnye uravneniya i giroskopicheskaya stabilizatsiya”, Funkts. analiz i ego prilozh., 39:4 (2005), 32–47 | MR | Zbl

[3] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl

[4] Lancaster P., Rodman L., Algebraic Riccati equations, Clarendon Press, Oxford, 1995 | MR | Zbl

[5] Aliev F. A., Larin V. B., “Osobye sluchai v zadachakh optimizatsii statsionarnykh lineinykh sistem, funktsioniruyuschikh po printsipu obratnoi svyazi”, Prikl. mekhan., 39:3 (2003), 3–25 | MR | Zbl

[6] Gelfand S. I., “O chisle reshenii kvadratnogo uravneniya”, Globus. Obschematem. seminar, v. 1, MTsNMO, M., 2004, 124–133

[7] Kozlov V V., Obschaya teoriya vikhrei, Izd. dom “Udmurtskii un-t”, Izhevsk, 1998 | MR | Zbl

[8] Kirillov A. A., “O chisle reshenii uravneniya $X^2=0$ v treugolnykh matritsakh nad konechnym polem”, Funkts. analiz i ego prilozh., 29:1 (1995), 82–87 | MR | Zbl

[9] Markus A. C., Mereutsa I. V., “O polnom nabore kornei operatornogo uravneniya, sootvetstvuyuschego polinomialnomu operatornomu puchku”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1108–1131 | MR | Zbl

[10] Dennis J. E., Traub J. P., Weber R. P., “The algebraic theory of matrix polynomials”, SIAM J. Numer. Analys., 13:6 (1976), 831–845 | DOI | MR | Zbl

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[12] Newman M., “On the Smith normal form”, J. Res. Bur. Standards Sect., 75 (1971), 81–84 | MR | Zbl

[13] Kazimipckii P. S., Rozklad matrichnikh mnogochleniv na mnozhniki, Nauk. dumka, Kiïv, 1981