Direct numerical simulation of one type of compressible turbulence interacting with a shock wave
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1937-1948 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Direct numerical simulations of compressible turbulence interacting with an initially plane shock wave are presented. The underlying model is based on the numerical solution of the Euler equations combined with direct statistical simulation. Steady-state isentropic isotropic turbulence is considered. The amplification factors for fluctuations of the thermodynamic variables, velocity, vorticity, and kinetic energy of fluctuations are analyzed; and the correlation coefficients between flow variables are studied for Mach numbers ranging from 1.2 to 3.
@article{ZVMMF_2007_47_11_a9,
     author = {O. A. Azarova},
     title = {Direct numerical simulation of one type of compressible turbulence interacting with a~shock wave},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1937--1948},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a9/}
}
TY  - JOUR
AU  - O. A. Azarova
TI  - Direct numerical simulation of one type of compressible turbulence interacting with a shock wave
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1937
EP  - 1948
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a9/
LA  - ru
ID  - ZVMMF_2007_47_11_a9
ER  - 
%0 Journal Article
%A O. A. Azarova
%T Direct numerical simulation of one type of compressible turbulence interacting with a shock wave
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1937-1948
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a9/
%G ru
%F ZVMMF_2007_47_11_a9
O. A. Azarova. Direct numerical simulation of one type of compressible turbulence interacting with a shock wave. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1937-1948. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a9/

[1] Andreopoulos Y., Agui T. H., Briassulis G., “Shock wave – turbulence interactions”, Ann. Rev. Fluid. Mech., 32 (2000), 309–345 | DOI | MR | Zbl

[2] Jamme S., Cazalbou J.-B., Torres F., Chassaing P., “Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence”, Flow, Turbulence and Combustion, 68 (2002), 227–268 | DOI | Zbl

[3] Mahesh K., Lele S. K., Moin P., “The influence of entropy fluctuations on the interaction of turbulence with a shock wave”, J. Fluid Mech., 334 (1997), 353–379 | DOI | MR | Zbl

[4] Lee S., Lele S. K., Moin P., “Interaction of isotropic turbulence with shock wave: effect of shock strength”, J. Fluid Mech., 340 (1997), 225–247 | DOI | MR | Zbl

[5] Rotman D., “Shock wave effects on a turbulent flow”, Phys. Fluids A, 3 (1991), 1792–1806 | DOI | Zbl

[6] Azarova O. A., “Chislennoe modelirovanie vzaimodeistviya turbulentnosti s udarnoi volnoi v potoke szhimaemogo gaza”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 543–552 | MR | Zbl

[7] Azarova O. A., Yanitskii V. E., “Chislennoe issledovanie statisticheskikh kharakteristik pulsatsii plotnosti v potoke s udarnoi volnoi”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1751–1757 | MR | Zbl

[8] Azarova O. A., Yanitskii V. E., “Fluktuatsii v potoke gaza s udarnoi volnoi”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1753–1760 | Zbl

[9] Azarova O. A., Yanitskii V. E., “Modelirovanie turbulentnogo potoka szhimaemogo gaza s udarnymi volnami”, Matem. modelirovanie, 14:8 (2002), 56–60 | Zbl

[10] Grudnitskii V. G., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 234:6 (1977), 1249–1252 | MR

[11] Belotserkovskii O. M., Grudnitskii V. G., Prokhorchuk Yu. A., “Raznostnaya skhema vtorogo poryadka tochnosti na minimalnom shablone dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:1 (1983), 119–126 | MR

[12] Artemev V. I., Bergelson V. I., Nemchinov I. V. i dr., “Izmenenie rezhima sverkhzvukovogo obtekaniya prepyatstviya pri vozniknovenii pered nim tonkogo razrezhennogo kanala”, Mekhan. zhidkosti i gaza, 1989, no. 5, 146–151

[13] Kolesnichenko Yu. F., Brovkin V. G., Azarova O. A. et al., Microwave energy release regimes for drag reduction in supersonic flows, Paper AIAA-2002-0353, 1–13 pp.

[14] Kolesnichenko Yu. F., Brovkin V. G., Azarova O. A. et al., MW energy deposition for aerodynamic application, Paper AIAA-2003-361, 1–11 pp.

[15] Kolesnichenko Yu. F., Azarova O. A., Brovkin V. G. et al., Basics in beamed MW energy deposition for flow/flight control, Paper AIAA-2004-0669, 1–14 pp.

[16] Shucaev F. V., Shtemenko L. S., Propagation and reflection of shock waves, World Scient., Singapore, 1998, 164–166 pp. | MR

[17] Azarova O. A., Shtemenko L. S., Shugaev F. V., “Numerical modeling of shock propagation through a turbulent flow”, Comput. Fluid Dynamics J., 12:2 (2003), 41–45