@article{ZVMMF_2007_47_11_a8,
author = {A. V. Mazhukin and V. I. Mazhukin},
title = {Dynamic adaptation for parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1913--1936},
year = {2007},
volume = {47},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/}
}
TY - JOUR AU - A. V. Mazhukin AU - V. I. Mazhukin TI - Dynamic adaptation for parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1913 EP - 1936 VL - 47 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/ LA - ru ID - ZVMMF_2007_47_11_a8 ER -
A. V. Mazhukin; V. I. Mazhukin. Dynamic adaptation for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1913-1936. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/
[1] Thompson J. F., Warsi Z. U. A., Mastin C. W., “Boundary-fitted coordinate systems for numerical solution of partial differential equations. A review”, J. Comput. Phys., 47:1 (1982), 1–108 | DOI | MR | Zbl
[2] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundation and application, Nort-Holland, New York, 1985 | MR | Zbl
[3] I. Babuska, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft (eds.), Modeling, mesh generation, and adaptive numerical methods for partial differential, Springer, Berlin etc., 1995 | MR | Zbl
[4] Proceedings of the 4–9 International Conferences on numerical grid generation in computational field simulations, 1994—2005
[5] “Prikladnaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya”, Tr. Vseros. konf. VTs RAN, v. 1, 2, VTs RAN, M., 2004
[6] Brackbill J. U., Saltzman J., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl
[7] Anderson D. A., “Equidistribution schemes, poisson generators, and adaptive grids”, Appl. Math. Comput., 24 (1987), 211–227 | DOI | MR | Zbl
[8] Matsuno K., Dwyer H. A., “Adaptive methods for elliptic grid generation”, J. Comput. Phys., 77 (1988), 40–52 | DOI | MR | Zbl
[9] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 643–662 | MR | Zbl
[10] Bercer M. J., Colella P., “Local adaptive mesh refinement for shock hydrodynamics”, J. Comput. Phys., 82 (1989), 64–84 | DOI
[11] Berger M. J., “Data structures for adaptive grid generation”, SIAM J. Sci. Statist. Comput., 3 (1986), 904–916
[12] Hyman J. M., Li S., Iterative and dynamic control of adaptive mesh refinement with nested hierarchical grids, Report No 5462, Los Alamos Lab., 1998
[13] Andersen A., Zheng X., Cristini V., “Adaptive unstructured volume remeshing. I: The method”, J. Comput. Phys., 208:2 (2005), 616–625 | DOI | MR
[14] Nourgaliev R. R., Dinh T. N., Theofanous T. G., “Adaptive characteristics-based matching for compressible multifluid dynamics”, J. Comput. Phys., 213:2 (2006), 500–529 | DOI | Zbl
[15] Darin H. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh raznostnykh setok”, Dokl. AN SSSR, 298:1 (1988), 64–68 | MR
[16] Darin H. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh setok dlya nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:3 (1988), 454–460 | MR
[17] Darin H. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya odnomernykh uravnenii gazovoi dinamiki na adaptivnykh setkakh”, Dokl. AN SSSR, 302:5 (1988), 1078–1081 | MR
[18] Mazhukin V. I., Takoeva L. Yu., “Printsipy postroeniya dinamicheski adaptiruyuschikhsya k resheniyu setok v odnomernykh kraevykh zadachakh”, Matem. modelirovanie, 2:3 (1990), 101–118 | MR | Zbl
[19] Mazhukin V. I., Samarskii A. A., Kastelyanos O., Shapranov A. B., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matem. modelirovanie, 5:4 (1993), 32–56 | MR | Zbl
[20] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 7:12 (1995), 48–78 | MR
[21] Hui W. H.,Li P. Y., Li Z. W., “A unified coordinate system for solving the two-dimensional Euler equations”, J. Comput. Phys., 153 (1999), 596–637 | DOI | MR | Zbl
[22] Hui W. H., Kudriakov S., “A unified coordinate system for solving the three-dimensional Euler equations”, J. Comput. Phys., 172 (2001), 235–260 | DOI | MR | Zbl
[23] Gilmanov A. N., “Primenenie dinamicheski adaptivnykh setok k issledovaniyu techenii s mnogomasshtabnoi strukturoi potoka”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 311–326 | MR
[24] Rudenko D. V., Utyuzhnikov S. V., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 395–409 | MR | Zbl
[25] Tang H., Tang T., “Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws”, SIAM J. Numer. Analys., 41:2 (2003), 487–515 | DOI | MR | Zbl
[26] Breslavskii P. V., Mazhukin V. I., “Dinamicheski adaptiruyuschiesya setki dlya vzaimodeistvuyuschikh razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 717–737 | MR
[27] Demin M. M., Mazhukin V. I., Shapranov A. B., “Metod dinamicheskoi adaptatsii v probleme laminarnogo goreniya”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 648–661 | MR | Zbl
[28] Demin M. M., Shapranov A. V., Smurov I., “The method of construction dynamically adapting grids for problems of unstable laminar combustion”, Numer. Heat Transfer. Part B: Fundamentals, 44:4 (2003), 387–415 | DOI | MR
[29] Lykov A. B., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl
[30] Zeldovich Ya. B., Kompaneets A. C., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, K 70-letiyu akad. A. F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71
[31] Samarskii A. A., Sobol I. M., “Primery chislennogo rascheta temperaturnykh voln”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 702–719 | MR
[32] Volosevich P. P., Levanov E. I., Avtomodelnye resheniya zadach gazovoi dinamiki i teploperenosa, Izd-vo MFTI, M., 1997
[33] Barenblatt G. I., Vishik M. I., “O konechnoi skorosti rasprostraneniya v zadachakh nestatsionarnoi filtratsii zhidkosti i gaza”, Prikl. matem. i mekhan., 20:3 (1956), 411–417 | MR | Zbl
[34] Warming R. E., Hyett B. J., “The modified equation approach to the stability and accuracy analysis of finite-difference methods”, J. Comput. Phys., 14 (1974), 159–179 | DOI | MR | Zbl
[35] Shokin Yu. I., Pervoe differentsialnoe priblizhenie, Nauka, Novosibirsk, 1979
[36] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[37] Vasilevskii V. F., Mazhukin V. I., “Chislennye raschety temperaturnykh voln so slabymi razryvami na setkakh s dinamicheskoi adaptatsiei”, Differents. ur-niya, 25:7 (1989), 1188–1193 | MR
[38] Anderson D. A., Tannehill J. C., Pletcher R. H., Computational fluid mechanics and heat transfer, Hemisphere Publ. Corp., New York, 1984 | MR | Zbl
[39] Bell J. B., Shubin G. R., “An adaptive grid finite difference method for conservation law”, J. Comput. Phys., 52 (1983), 569–591 | DOI | Zbl
[40] Benton E. R., Platzman G. W., “A table of the one-dimensional Burgers equation”, Quarterly Appl. Math., 30 (1972), 195–212 | MR | Zbl