Dynamic adaptation for parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1913-1936 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamic adaptation method is presented that is based on the idea of using an arbitrary time-dependent system of coordinates that moves at a velocity determined by the unknown solution. Using some model problems as examples, the generation of grids that adapt to the solution is considered for parabolic equations. Among these problems are the nonlinear heat transfer problem concerning the formation of stationary and moving temperature fronts and the convection-diffusion problems described by the nonlinear Burgers and Buckley-Leverette equations. A detailed analysis of differential approximations and numerical results shows that the idea of using an arbitrary time-dependent system of coordinates for adapted grid generation in combination with the principle of quasi-stationarity makes the dynamic adaptation method universal, effective, and algorithmically simple. The universality is achieved due to the use of an arbitrary time-dependent system of coordinates that moves at a velocity determined by the unknown solution. This universal approach makes it possible to generate adapted grids for time-dependent problems of mathematical physics with various mathematical features. Among these features are large gradients, propagation of weak and strong discontinuities in nonlinear transport and heat transfer problems, and moving contact and free boundaries in fluid dynamics. The efficiency is determined by automatically fitting the velocity of the moving nodes to the dynamics of the solution. The close relationship between the adaptation mechanism and the structure of the parabolic equations allows one to automatically control the nodes’ motion so that their trajectories do not intersect. This mechanism can be applied to all parabolic equations in contrast to the hyperbolic equations, which do not include repulsive components. The simplicity of the algorithm is achieved due to the general approach to the adaptive grid generation, which is independent of the form and type of the differential equations.
@article{ZVMMF_2007_47_11_a8,
     author = {A. V. Mazhukin and V. I. Mazhukin},
     title = {Dynamic adaptation for parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1913--1936},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/}
}
TY  - JOUR
AU  - A. V. Mazhukin
AU  - V. I. Mazhukin
TI  - Dynamic adaptation for parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1913
EP  - 1936
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/
LA  - ru
ID  - ZVMMF_2007_47_11_a8
ER  - 
%0 Journal Article
%A A. V. Mazhukin
%A V. I. Mazhukin
%T Dynamic adaptation for parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1913-1936
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/
%G ru
%F ZVMMF_2007_47_11_a8
A. V. Mazhukin; V. I. Mazhukin. Dynamic adaptation for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1913-1936. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a8/

[1] Thompson J. F., Warsi Z. U. A., Mastin C. W., “Boundary-fitted coordinate systems for numerical solution of partial differential equations. A review”, J. Comput. Phys., 47:1 (1982), 1–108 | DOI | MR | Zbl

[2] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundation and application, Nort-Holland, New York, 1985 | MR | Zbl

[3] I. Babuska, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft (eds.), Modeling, mesh generation, and adaptive numerical methods for partial differential, Springer, Berlin etc., 1995 | MR | Zbl

[4] Proceedings of the 4–9 International Conferences on numerical grid generation in computational field simulations, 1994—2005

[5] “Prikladnaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya”, Tr. Vseros. konf. VTs RAN, v. 1, 2, VTs RAN, M., 2004

[6] Brackbill J. U., Saltzman J., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl

[7] Anderson D. A., “Equidistribution schemes, poisson generators, and adaptive grids”, Appl. Math. Comput., 24 (1987), 211–227 | DOI | MR | Zbl

[8] Matsuno K., Dwyer H. A., “Adaptive methods for elliptic grid generation”, J. Comput. Phys., 77 (1988), 40–52 | DOI | MR | Zbl

[9] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 643–662 | MR | Zbl

[10] Bercer M. J., Colella P., “Local adaptive mesh refinement for shock hydrodynamics”, J. Comput. Phys., 82 (1989), 64–84 | DOI

[11] Berger M. J., “Data structures for adaptive grid generation”, SIAM J. Sci. Statist. Comput., 3 (1986), 904–916

[12] Hyman J. M., Li S., Iterative and dynamic control of adaptive mesh refinement with nested hierarchical grids, Report No 5462, Los Alamos Lab., 1998

[13] Andersen A., Zheng X., Cristini V., “Adaptive unstructured volume remeshing. I: The method”, J. Comput. Phys., 208:2 (2005), 616–625 | DOI | MR

[14] Nourgaliev R. R., Dinh T. N., Theofanous T. G., “Adaptive characteristics-based matching for compressible multifluid dynamics”, J. Comput. Phys., 213:2 (2006), 500–529 | DOI | Zbl

[15] Darin H. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh raznostnykh setok”, Dokl. AN SSSR, 298:1 (1988), 64–68 | MR

[16] Darin H. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh setok dlya nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:3 (1988), 454–460 | MR

[17] Darin H. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya odnomernykh uravnenii gazovoi dinamiki na adaptivnykh setkakh”, Dokl. AN SSSR, 302:5 (1988), 1078–1081 | MR

[18] Mazhukin V. I., Takoeva L. Yu., “Printsipy postroeniya dinamicheski adaptiruyuschikhsya k resheniyu setok v odnomernykh kraevykh zadachakh”, Matem. modelirovanie, 2:3 (1990), 101–118 | MR | Zbl

[19] Mazhukin V. I., Samarskii A. A., Kastelyanos O., Shapranov A. B., “Metod dinamicheskoi adaptatsii dlya nestatsionarnykh zadach s bolshimi gradientami”, Matem. modelirovanie, 5:4 (1993), 32–56 | MR | Zbl

[20] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 7:12 (1995), 48–78 | MR

[21] Hui W. H.,Li P. Y., Li Z. W., “A unified coordinate system for solving the two-dimensional Euler equations”, J. Comput. Phys., 153 (1999), 596–637 | DOI | MR | Zbl

[22] Hui W. H., Kudriakov S., “A unified coordinate system for solving the three-dimensional Euler equations”, J. Comput. Phys., 172 (2001), 235–260 | DOI | MR | Zbl

[23] Gilmanov A. N., “Primenenie dinamicheski adaptivnykh setok k issledovaniyu techenii s mnogomasshtabnoi strukturoi potoka”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 311–326 | MR

[24] Rudenko D. V., Utyuzhnikov S. V., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 395–409 | MR | Zbl

[25] Tang H., Tang T., “Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws”, SIAM J. Numer. Analys., 41:2 (2003), 487–515 | DOI | MR | Zbl

[26] Breslavskii P. V., Mazhukin V. I., “Dinamicheski adaptiruyuschiesya setki dlya vzaimodeistvuyuschikh razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 717–737 | MR

[27] Demin M. M., Mazhukin V. I., Shapranov A. B., “Metod dinamicheskoi adaptatsii v probleme laminarnogo goreniya”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 648–661 | MR | Zbl

[28] Demin M. M., Shapranov A. V., Smurov I., “The method of construction dynamically adapting grids for problems of unstable laminar combustion”, Numer. Heat Transfer. Part B: Fundamentals, 44:4 (2003), 387–415 | DOI | MR

[29] Lykov A. B., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl

[30] Zeldovich Ya. B., Kompaneets A. C., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, K 70-letiyu akad. A. F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71

[31] Samarskii A. A., Sobol I. M., “Primery chislennogo rascheta temperaturnykh voln”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 702–719 | MR

[32] Volosevich P. P., Levanov E. I., Avtomodelnye resheniya zadach gazovoi dinamiki i teploperenosa, Izd-vo MFTI, M., 1997

[33] Barenblatt G. I., Vishik M. I., “O konechnoi skorosti rasprostraneniya v zadachakh nestatsionarnoi filtratsii zhidkosti i gaza”, Prikl. matem. i mekhan., 20:3 (1956), 411–417 | MR | Zbl

[34] Warming R. E., Hyett B. J., “The modified equation approach to the stability and accuracy analysis of finite-difference methods”, J. Comput. Phys., 14 (1974), 159–179 | DOI | MR | Zbl

[35] Shokin Yu. I., Pervoe differentsialnoe priblizhenie, Nauka, Novosibirsk, 1979

[36] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[37] Vasilevskii V. F., Mazhukin V. I., “Chislennye raschety temperaturnykh voln so slabymi razryvami na setkakh s dinamicheskoi adaptatsiei”, Differents. ur-niya, 25:7 (1989), 1188–1193 | MR

[38] Anderson D. A., Tannehill J. C., Pletcher R. H., Computational fluid mechanics and heat transfer, Hemisphere Publ. Corp., New York, 1984 | MR | Zbl

[39] Bell J. B., Shubin G. R., “An adaptive grid finite difference method for conservation law”, J. Comput. Phys., 52 (1983), 569–591 | DOI | Zbl

[40] Benton E. R., Platzman G. W., “A table of the one-dimensional Burgers equation”, Quarterly Appl. Math., 30 (1972), 195–212 | MR | Zbl