@article{ZVMMF_2007_47_11_a7,
author = {A. G. Zhilkin},
title = {A~dynamic mesh adaptation method for magnetohydrodynamics problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1898--1912},
year = {2007},
volume = {47},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a7/}
}
TY - JOUR AU - A. G. Zhilkin TI - A dynamic mesh adaptation method for magnetohydrodynamics problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1898 EP - 1912 VL - 47 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a7/ LA - ru ID - ZVMMF_2007_47_11_a7 ER -
A. G. Zhilkin. A dynamic mesh adaptation method for magnetohydrodynamics problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1898-1912. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a7/
[1] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[2] Dwyer H. A., “Grid adaptation lor problems in fluid dynamics”, AIAA Journal, 22:12 (1984), 1705–1712 | DOI | Zbl
[3] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990 | MR
[4] Kruglyakova L. V., Neledova A. B., Tishkin V. F., Filatov A. Yu., “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR
[5] Gilmanov A. N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Fizmatlit, M., 2000 | MR
[6] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[7] Berger M. J., Oliger J., “Adaptive mesh refinement for hyperbolic partial differential equations”, J. Comput. Phys., 53 (1984), 484–512 | DOI | MR | Zbl
[8] Berger M. J., Colella P., “Local adaptive mesh refinement for shock hydrodynamics”, J. Comput. Phys., 82 (1989), 64–84 | DOI | Zbl
[9] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 3–41 | MR
[10] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl
[11] Sidorov A. F., Ushakov O. B., “Ob odnom algoritme postroeniya optimalnykh raznostnykh setok i ego prilozheniyakh”, Chisl. metody mekhan. sploshnoi sredy, 18, no. 5, ITPM SO AN SSSR, Novosibirsk, 1985, 101–115 | MR
[12] Rudenko D. V., Utyuzhnikova C. B., “Primenenie dinamicheski adaptivnykh k resheniyu setok dlya modelirovaniya prostranstvennykh nestatsionarnykh techenii gaza s bolshimi gradientami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 395–409 | MR | Zbl
[13] Gilmanov H. A., “Primenenie dinamicheski adaptivnykh setok k issledovaniyu techenii s mnogomasshtabnoi strukturoi potoka”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 311–326 | MR
[14] Mazhukin V. I., Takoeva L. Yu., “Printsipy postroeniya dinamicheski adaptiruyuschikhsya k resheniyu setok v odnomernykh kraevykh zadachakh”, Matem. modelirovanie, 2:3 (1990), 101–118 | MR | Zbl
[15] Darin H. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s ispolzovaniem adaptivnykh setok, dinamicheski svyazannykh s resheniem”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1210–1225 | MR
[16] Darin H. A., Mazhukin V. I., “Matematicheskoe modelirovanie nestatsionarnykh dvumernykh kraevykh zadach na setkakh s dinamicheskoi adaptatsiei”, Matem. modelirovanie, 1:3 (1989), 29–43 | MR
[17] Mazhukin V. I., Samarskii A. A., Shapranov A. B., “Metod dinamicheskoi adaptatsii v probleme Byurgersa”, Dokl. RAN, 333:2 (1993), 165–169 | MR | Zbl
[18] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 7:12 (1995), 48–78 | MR
[19] Mazhukin V. I., Samarskii A. A., Chuiko M. M., “Metod dinamicheskoi adaptatsii dlya chislennogo resheniya nestatsionarnykh mnogomernykh zadach Stefana”, Dokl. RAN, 368:3 (1999), 307–310 | MR | Zbl
[20] Demin M. M., Mazhukin V. I., Shapranov A. A., “Metod dinamicheskoi adaptatsii v probleme laminarnogo goreniya”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 648–661 | MR | Zbl
[21] Rozhdestvenskii B. L., Yanenko H. H., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968
[22] Hui W. H., Li P. Y., Li Z. W., “A unified coordinate system for solving the two-dimensional Euler equations”, J. Comput. Phys., 153 (1999), 596–637 | DOI | MR | Zbl
[23] Hui W. H., Kudriakov S., “A unified coordinate system for solving the three-dimensional Euler equations”, J. Comput. Phys., 172 (2001), 235–260 | DOI | MR | Zbl
[24] Wu Z. N., “A note on the unified coordinate system for computing shock waves”, J. Comput. Phys., 180 (2002), 110–119 | DOI | MR | Zbl
[25] Mazeran C., Despres B., “Lagrangian gas dynamics in dimension two and Lagrangian systems”, Arch. Ration. Mech. and Analys., 178:3 (2005), 327–372 | DOI | MR | Zbl
[26] Dudorov A. E., Zhilkin A. G., Kuznetsov O. A., “Kvazimonotonnaya raznostnaya skhema povyshennogo poryadka tochnosti dlya uravnenii magnitnoi gidrodinamiki”, Matem. modelirovanie, 11:1 (1999), 101–116 | MR
[27] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7:1 (1954), 159–193 | DOI | MR | Zbl
[28] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Papers No 85-0363, 1985
[29] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[30] Vyaznikov K. V., Tishkin V. F., Favorskii A. P., “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR | Zbl