@article{ZVMMF_2007_47_11_a6,
author = {S. L. Skorokhodov and D. V. Khristoforov},
title = {Calculating the branch points of the eigenvalues of the {Coulomb} spheroidal wave equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1880--1897},
year = {2007},
volume = {47},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a6/}
}
TY - JOUR AU - S. L. Skorokhodov AU - D. V. Khristoforov TI - Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1880 EP - 1897 VL - 47 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a6/ LA - ru ID - ZVMMF_2007_47_11_a6 ER -
%0 Journal Article %A S. L. Skorokhodov %A D. V. Khristoforov %T Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 1880-1897 %V 47 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a6/ %G ru %F ZVMMF_2007_47_11_a6
S. L. Skorokhodov; D. V. Khristoforov. Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1880-1897. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a6/
[1] Baber W. G., Hasse H. R., “The two centre problem in wave mechanics”, Proc. Cambridge. Philos. Soc., 31 (1935), 564–581 | DOI | Zbl
[2] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR | Zbl
[3] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[4] Flammer K., Tablitsy volnovykh sferoidalnykh funktsii, VTs AN SSSR, M., 1962 | MR
[5] Li L.-W., Kang X.-K., Leong M.-S., Spheroidal wave functions in electromagnetic theory, Wiley, N.Y., 2001
[6] Falloon P. E., Abbott P. C., Wang J. B., “Theory and computation of the spheroidal wave functions”, J. Phys. A: Math. and General., 36 (2003), 5477–5495 {http://arxiv.org/ftp/math-ph/papers/0212/0212051.pdf} http://internal.physics.uwa.edu.au/falloon/spheroidal/spheroidal.html | DOI | MR | Zbl
[7] Barrowes B. E., O'Neill K., Grzegorczyk T. M., Kong J. A., “On the asymptotic expansion of the spheroidal wave function and its eigenvalues for complex size parameter”, Studies in Appl. Math., 113:3 (2004), 271–301 | MR | Zbl
[8] Ains E. L., Obyknovennye differentsialnye uravneniya, Nauchno-tekhn. izd-vo Ukrainy, Kharkov, 1939
[9] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR
[10] Shafer R. E., “On quadratic approximation”, SIAM J. Num. Analys., 11:2 (1974), 447–460 | DOI | MR | Zbl
[11] Skorokhodov S. L., Khristoforov D. V., “Vychislenie tochek vetvleniya sobstvennykh znachenii, sootvetstvuyuschikh volnovym sferoidalnym funktsiyam”, Zh. vychisl. matem. i matem. fiz., 46:7 (2006), 1195–1210 | MR
[12] Skorokhodov S. L., Khristoforov D. V., “Tochki vetvleniya sobstvennykh znachenii, sootvetstvuyuschikh sferoidalnym volnovym funktsiyam”, Tezisy dokl. sekts. “Funkts. analiz i differents. ur-niya”, Mezhdunar. konf. “Tikhonov i sovrem. matem.” (Moskva, 19–25 iyunya 2006 g.), M., 2006, 259–260
[13] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M., L., 1950
[14] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatlit, M., 1967 | MR
[15] Birkhoff G. D., “Formal theory of irregular difference equations”, Acta Math., 54 (1930), 205–246 | DOI | MR | Zbl
[16] Birkhoff G. D., Trjitzinsky W., “Analytic theory of singular difference equations”, Acta Math., 60 (1932), 1–89 | DOI | MR
[17] Wimp J., Zeilberger D., “Resurrecting the asymptotics of linear recurrences”, J. Math. Analys. and Appl., 111 (1985), 162–176 | DOI | MR | Zbl
[18] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR
[19] Abramov A. A., “Vydelenie medlenno rastuschikh posledovatelnostei, chleny kotorykh udovletvoryayut zadannym rekurrentnym sootnosheniyam”, Zh. vychisl. matem. i matem. fiz., 45:4 (2005), 661–668 | MR | Zbl
[20] Abramov A. A., Kurochkin S. V., “Vysokotochnoe vychislenie uglovykh sferoidalnykh funktsii”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 12–17 | MR | Zbl
[21] Skorokhodov S. L., “Kvaziavtomodelnost sobstvennykh znachenii, sootvetstvuyuschikh volnovym sferoidalnym funktsiyam”, Spectral and Evolution Problems, Proc. XVI Crimean Autumn Math. School-Symp. (KROMSH-2005), v. 16, Simferopol, 2006, 100–111
[22] Blanch G., Clemm D. S., “The double points of Mathieu's differential equation”, Math. Comput., 23:105 (1969), 97–108 | DOI | MR | Zbl
[23] Bogolyubskii A. I., Skorokhodov S. L., “Analitiko-chislennyi metod rascheta solitonnykh reshenii v modeli teorii polya”, Spectral and Evolution Problems, Proc. XIII Crimean Autumn Math. School-Symp., v. 14, Simferopol, 2004, 152–162
[24] Bogolyubskii A. I., Skorokhodov S. L., “Approksimatsii Pade, simvolnye preobrazovaniya i metod rascheta solitonov v dvukhpolevoi modeli antiferromagnetika”, Programmirovanie, 2004, no. 2, 51–56 | MR
[25] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | MR | Zbl
[26] Khrebtukov D. B., “The exact numerical solution of a Schrödincer equation with two-Coulomb centers plus oscillator potential”, J. Phys. A: Math. and General., 25 (1992), 3319–3328 | DOI | MR | Zbl
[27] Solov'ev E. A., “The advanced adiabatic approach and inelastic transitions via hidden crossings”, J. Phys. B: Atomic, Molecular and Optic. Phys., 38 (2005), R153–R194 | DOI