Optimal control problems with terminal functionals represented as the difference of two convex functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1865-1879 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two control problems for a state-linear control system are considered: the minimization of a terminal functional representable as the difference of two convex functions (d.c. functions) and the minimization of a convex terminal functional with a d.c. terminal inequality contraint. Necessary and sufficient global optimality conditions are proved for problems in which the Pontryagin and Bellman maximum principles do not distinguish between locally and globally optimal processes. The efficiency of the approach is illustrated by examples.
@article{ZVMMF_2007_47_11_a5,
     author = {A. S. Strekalovskii},
     title = {Optimal control problems with terminal functionals represented as the difference of two convex functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1865--1879},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a5/}
}
TY  - JOUR
AU  - A. S. Strekalovskii
TI  - Optimal control problems with terminal functionals represented as the difference of two convex functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1865
EP  - 1879
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a5/
LA  - ru
ID  - ZVMMF_2007_47_11_a5
ER  - 
%0 Journal Article
%A A. S. Strekalovskii
%T Optimal control problems with terminal functionals represented as the difference of two convex functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1865-1879
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a5/
%G ru
%F ZVMMF_2007_47_11_a5
A. S. Strekalovskii. Optimal control problems with terminal functionals represented as the difference of two convex functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1865-1879. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a5/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997 | MR | Zbl

[3] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Nauka, M., 1997 | MR | Zbl

[4] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[5] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 | MR | Zbl

[6] Strekalovskii A. C., Sharankhaeva E. V., “Globalnyi poisk v nevypukloi zadache optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1785–1800 | MR | Zbl

[7] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[8] Strekalovskii A. C., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[9] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[10] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[11] Tyatyushkin A. I., Mnogometodnaya tekhnologiya optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 2006 | Zbl

[12] Strekalovsky A. S., Vasiliev I. L., “On global search for non-convex optimal control problems”, Developments in Global Optimizat., Nonconvex Optimizat. and Its Applic., Kluwer Acad. Publ., Dordrecth, 1997, 121–133 | MR | Zbl

[13] Strekalovsky A. S., “On global maximum of a convex terminal function in optimal control problems”, J. Global Optimizat., 7 (1995), 75–91 | DOI | MR | Zbl

[14] Strekalovskii A. C., “Ob ekstremalnykh zadachakh na dopolneniyakh vypuklykh mnozhestv”, Kibernetika i sistemnyi analiz, 1993, no. 1, 113–126 | MR

[15] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo Irkutskogo un-ta, Irkutsk, 1994

[16] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR

[17] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972