@article{ZVMMF_2007_47_11_a4,
author = {N. B. Brusnikina and A. V. Lotov},
title = {Guaranteed-accuracy approximation of reachable sets for a~linear dynamic system subject to impulse actions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1855--1864},
year = {2007},
volume = {47},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/}
}
TY - JOUR AU - N. B. Brusnikina AU - A. V. Lotov TI - Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1855 EP - 1864 VL - 47 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/ LA - ru ID - ZVMMF_2007_47_11_a4 ER -
%0 Journal Article %A N. B. Brusnikina %A A. V. Lotov %T Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 1855-1864 %V 47 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/ %G ru %F ZVMMF_2007_47_11_a4
N. B. Brusnikina; A. V. Lotov. Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1855-1864. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[2] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR
[3] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1996 | MR
[4] Lotov A. B., Metody analiza matematicheskikh modelei upravlyaemykh sistem na osnove postroeniya mnozhestva dostizhimykh znachenii pokazatelei kachestva upravleniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1985
[5] Lotov A. B., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinoi upravlyaemoi sistemy s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 67–78 | MR | Zbl
[6] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[7] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl
[8] Brusnikina H. B., “Raschet opornoi funktsii mnozhestva dostizhimosti lineinoi upravlyaemoi sistemy s garantirovannoi otsenkoi pogreshnosti”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 2006, no. 1, 42–48 | MR | Zbl
[9] Brusnikina N. B., “Mnogoshagovaya approksimatsiya posledovatelnosti mnozhestv dostizhimosti lineinoi avtonomnoi upravlyaemoi sistemy s garantirovannoi tochnostyu”, Sb. statei molodykh uchenykh f-ta VMiK MGU, v. 2, 2005, 24–30
[10] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shkola, M., 2001
[11] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[12] Brusnikina N. B., Kamenev G. K., “O slozhnosti i metodakh poliedralnoi approksimatsii vypuklykh tel s chastichno gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1555–1565 | MR | Zbl
[13] Bakhvalov N. C., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl