Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1855-1864 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for approximating the reachable set of a dynamic system with a state space dimension no higher than six-eight considered on a finite time interval. The system is governed by linear differential equations with piecewise constant coefficients and impulse actions specified at prescribed times. The method is based on guaranteed-accuracy polyhedral approximations of reachable sets at researcher-specified times. Every approximation is constructed using the preceding one. A procedure is described for choosing parameters of the method that ensure the required accuracy with close-to-minimal time costs.
@article{ZVMMF_2007_47_11_a4,
     author = {N. B. Brusnikina and A. V. Lotov},
     title = {Guaranteed-accuracy approximation of reachable sets for a~linear dynamic system subject to impulse actions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1855--1864},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/}
}
TY  - JOUR
AU  - N. B. Brusnikina
AU  - A. V. Lotov
TI  - Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1855
EP  - 1864
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/
LA  - ru
ID  - ZVMMF_2007_47_11_a4
ER  - 
%0 Journal Article
%A N. B. Brusnikina
%A A. V. Lotov
%T Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1855-1864
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/
%G ru
%F ZVMMF_2007_47_11_a4
N. B. Brusnikina; A. V. Lotov. Guaranteed-accuracy approximation of reachable sets for a linear dynamic system subject to impulse actions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1855-1864. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[2] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR

[3] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1996 | MR

[4] Lotov A. B., Metody analiza matematicheskikh modelei upravlyaemykh sistem na osnove postroeniya mnozhestva dostizhimykh znachenii pokazatelei kachestva upravleniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1985

[5] Lotov A. B., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinoi upravlyaemoi sistemy s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 67–78 | MR | Zbl

[6] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[7] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl

[8] Brusnikina H. B., “Raschet opornoi funktsii mnozhestva dostizhimosti lineinoi upravlyaemoi sistemy s garantirovannoi otsenkoi pogreshnosti”, Vestn. MGU. Ser. Vychisl. matem. i kibernetika, 2006, no. 1, 42–48 | MR | Zbl

[9] Brusnikina N. B., “Mnogoshagovaya approksimatsiya posledovatelnosti mnozhestv dostizhimosti lineinoi avtonomnoi upravlyaemoi sistemy s garantirovannoi tochnostyu”, Sb. statei molodykh uchenykh f-ta VMiK MGU, v. 2, 2005, 24–30

[10] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shkola, M., 2001

[11] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[12] Brusnikina N. B., Kamenev G. K., “O slozhnosti i metodakh poliedralnoi approksimatsii vypuklykh tel s chastichno gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1555–1565 | MR | Zbl

[13] Bakhvalov N. C., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl