Numerical method for solving a nonlinear time-optimal control problem with additive control
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1843-1854 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear systems whose right-hand sides are divided by the state and control and are linear in control are considered. An iterative method is proposed for solving time-optimal control problems for such systems. The method is based on constructing finite sequences of adjacent simplexes with their vertices lying on the boundaries of reachability sets. For a controllable system, it is proved that the minimizing sequence converges to an $\varepsilon$-optimal solution in a finite number of iterations.
@article{ZVMMF_2007_47_11_a3,
     author = {G. V. Shevchenko},
     title = {Numerical method for solving a~nonlinear time-optimal control problem with additive control},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1843--1854},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a3/}
}
TY  - JOUR
AU  - G. V. Shevchenko
TI  - Numerical method for solving a nonlinear time-optimal control problem with additive control
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1843
EP  - 1854
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a3/
LA  - ru
ID  - ZVMMF_2007_47_11_a3
ER  - 
%0 Journal Article
%A G. V. Shevchenko
%T Numerical method for solving a nonlinear time-optimal control problem with additive control
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1843-1854
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a3/
%G ru
%F ZVMMF_2007_47_11_a3
G. V. Shevchenko. Numerical method for solving a nonlinear time-optimal control problem with additive control. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1843-1854. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a3/

[1] Pshenichnyi B. N., “Chislennyi metod rascheta optimalnogo po bystrodeistviyu upravleniya dlya lineinykh sistem”, Zh. vychisl. matem. i matem. fiz., 4:1 (1964), 52–60

[2] Vasilev O. V., Tyatyushkin A. I., “K chislennomu resheniyu zadach lineinogo bystrodeistviya”, Differents. i integr. ur-niya, 2, Izd-vo Irkutskogo un-ta, Irkutsk, 1973, 57–69

[3] Dyurkovich E., “Chislennyi metod resheniya lineinykh zadach bystrodeistviya s otsenkoi tochnosti”, Dokl. AN SSSR, 265:4 (1982), 793–797 | MR | Zbl

[4] Subrahmanyam M. B., “A computational method tor solution of time-optimal control problems by Newton's method”, Internat. J. Control, 44 (1986), 1233–1243 | DOI | Zbl

[5] Orlov M. B., “Lineinaya zadacha bystrodeistviya: chislennyi algoritm”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1986, no. 4, 41–46 | MR

[6] Korobov V. I., Sklyar G. M., “Optimalnoe bystrodeistvie i trigonometricheskaya problema momentov”, Izv. AN SSSR. Ser. matem., 1989, no. 4, 868–885 | MR

[7] Kiselev Yu. N., Orlov M. V., “Chislennye algoritmy lineinykh bystrodeistvii”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1763–1771 | MR

[8] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 918–931 | MR | Zbl

[9] Boldyrev V. I., “Chislennoe reshenie zadachi lineinogo bystrodeistviya”, Fundamentalnaya i prikl. matem., 5:3 (1999), 637–648 | MR | Zbl

[10] Shevchenko G. V., “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo bystrodeistviya”, Zh. vychisl. matem. i matem. fiz., 42:8 (2002), 1166–1178 | MR | Zbl

[11] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya optimalnogo po bystrodeistviyu upravleniya kvazilineinymi sistemami”, Sibirskii zhurnal vychisl. matem., 6:3 (2003), 227–247 | Zbl

[12] Pontryagin L. S., Boltyanskii V. T., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[13] Shevchenko G. V., “Method for solving some nonlinear problems of Minimizing Resources Consumption”, Proc. sec. IASTED Internat. Conf. “Automation, Control, and Information Technology”, Acta Press, Anaheim, Calgary, Zurich, 2005, 303–308