Cutting methods in $E^{n+1}$ for global optimization of a class of functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1830-1842 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of functions that attain their minima on a compact subset of the $n$-dimensional Euclidean space $E^n$ is introduced. This is a rather broad functional class, which is stable with respect to operations commonly occurring in optimization. The functions in this class are a convenient tool in the formal description of numerous applied problems. Moreover, reasonably efficient methods can be developed for finding global minima of such functions on a compact set. One such method is discussed in this paper.
@article{ZVMMF_2007_47_11_a2,
     author = {V. P. Bulatov and O. V. Khamisov},
     title = {Cutting methods in $E^{n+1}$ for global optimization of a~class of functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1830--1842},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a2/}
}
TY  - JOUR
AU  - V. P. Bulatov
AU  - O. V. Khamisov
TI  - Cutting methods in $E^{n+1}$ for global optimization of a class of functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1830
EP  - 1842
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a2/
LA  - ru
ID  - ZVMMF_2007_47_11_a2
ER  - 
%0 Journal Article
%A V. P. Bulatov
%A O. V. Khamisov
%T Cutting methods in $E^{n+1}$ for global optimization of a class of functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1830-1842
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a2/
%G ru
%F ZVMMF_2007_47_11_a2
V. P. Bulatov; O. V. Khamisov. Cutting methods in $E^{n+1}$ for global optimization of a class of functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1830-1842. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a2/

[1] Hirriart-Urruty J. B., “From convex optimization to noncovex optimization. Part I: Necessary and sufficient conditions for global optimality”, Nonsmooth Optimization Related Topics, Plenum Press, New York, 1989, 219–239

[2] Horst R., Tuy H., Global optimization. Deterministic approaches, Springer, Berlin, 1993 | MR

[3] Bulatov V. P., “Metody resheniya mnogoekstremalnykh zadach (globalnyi poisk)”, Metody chisl. analiza i optimizatsii, Nauka, Novosibirsk, 1987, 133–157 | MR

[4] Bulatov V. P., Metody otsecheniya v zadachakh optimizatsii, Avtoref. dis. $\dots$ dokt. fiz.-matem. nauk, ISEM SO AN SSSR, Irkutsk, 1984

[5] Bulatov V. P., Metody pogruzheniya v zadachakh optimizatsii, Nauka, SO AN SSSR, Novosibirsk, 1977 | MR | Zbl