On certain two-sided analogues of Newton's method for solving nonlinear eigenvalue problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1819-1829 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Iterative algorithms for finding two-sided approximations to the eigenvalues of nonlinear algebraic eigenvalue problems are examined. These algorithms use an efficient numerical procedure for calculating the first and second derivatives of the determinant of the problem. Computational aspects of this procedure as applied to finding all the eigenvalues from a given complex-plane domain in a nonlinear eigenvalue problem are analyzed. The efficiency of the algorithms is demonstrated using some model problems.
@article{ZVMMF_2007_47_11_a1,
     author = {B. M. Podlevskii},
     title = {On certain two-sided analogues of {Newton's} method for solving nonlinear eigenvalue problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1819--1829},
     year = {2007},
     volume = {47},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a1/}
}
TY  - JOUR
AU  - B. M. Podlevskii
TI  - On certain two-sided analogues of Newton's method for solving nonlinear eigenvalue problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1819
EP  - 1829
VL  - 47
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a1/
LA  - ru
ID  - ZVMMF_2007_47_11_a1
ER  - 
%0 Journal Article
%A B. M. Podlevskii
%T On certain two-sided analogues of Newton's method for solving nonlinear eigenvalue problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1819-1829
%V 47
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a1/
%G ru
%F ZVMMF_2007_47_11_a1
B. M. Podlevskii. On certain two-sided analogues of Newton's method for solving nonlinear eigenvalue problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 11, pp. 1819-1829. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_11_a1/

[1] Anselone P. M., Rail L. B., “The solution of the characteristic value-vector problems by Newton's method”, Numer. Math., 11:2 (1968), 38–45 | DOI | MR | Zbl

[2] Ruhe A., “Algorithms lor the nonlinear eigenvalue problem”, SIAM J. Numer. Analys., 10:4 (1973), 674–690 | DOI | MR

[3] Neumaier A., “Residual inverse iteration for the nonlinear eigenvalue problem”, SIAM J. Numer. Analys., 22:5 (1985), 914–923 | DOI | MR | Zbl

[4] Kartyshov C. B., “Chislennyi metod resheniya zadachi na sobstvennye znacheniya s nelineinym vkhozhdeniem spektralnogo parametra dlya razrezhennykh matrits”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1898–1903 | MR

[5] Podlevskii B. M., “Chiselnii metod rozv'yazuvannya odnogo klasu neliniinikh spektralnikh zadach”, Mat. metodi ta fiz.-mex. polya, 44:2 (2001), 34–38 | MR

[6] Delves L. M., Lyness J. N., “A numerical method for locating the zeros of analytic function”, Math. Comput., 100 (1967), 543–561 | MR

[7] Abramov A. A., Yukhno L. F., “Ob opredelenii chisla sobstvennykh znachenii spektralnoi zadachi”, Zh. vychisl. matem. i matem. fiz., 34:5 (1994), 776–783 | MR | Zbl

[8] Aslanyan M. A., Kartyshov C. B., “Modifikatsiya odnogo chislennogo metoda resheniya nelineinoi spektralnoi zadachi”, Zh. vychisl. matem. i matem. fiz., 38:5 (1998), 713–717 | MR | Zbl

[9] Bitsadze A. B., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1972 | MR

[10] Podlevskii B. M., “Pro odin pidkhid do pobudovi dvostoronnikh iteratsiinikh metodiv rozv'yazuvannya neliniinikh pivnyan”, Dop. HAH Ukraïni, 1998, no. 5, 37–41 | MR

[11] Podlevskii B. M., Metodi dvostoronnikh nablizhen rozv'yazuvannya neliniinikh rivnyan, Preprint No 2, IPPMM HAH Ukraïni, Lviv, 2001

[12] Kublanovskaya V. N., “K spektralnoi zadache dlya polinomialnykh puchkov matrits”, Zap. nauchn. seminarov LOMI AN SSSR, 111, 1981, 109–116 | MR | Zbl

[13] Gulin A. B., Drozdova O. M., Kartyshov S. V., Iteratsionnyi metod resheniya zadachi na sobstvennye znacheniya s nelineinym vkhozhdeniem spektralnogo parametra, Preprint No 137, IPMatem. AN SSSR, M., 1986

[14] Kublanovskaya V. N., “O primenenii metoda Nyutona k opredeleniyu sobstvennykh znachenii $\lambda$-matrits”, Dokl. AN SSSR, 188:5 (1969), 1004–1005 | Zbl