@article{ZVMMF_2007_47_10_a6,
author = {V. Korneev and A. Rytov},
title = {Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1727--1745},
year = {2007},
volume = {47},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a6/}
}
TY - JOUR AU - V. Korneev AU - A. Rytov TI - Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1727 EP - 1745 VL - 47 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a6/ LA - en ID - ZVMMF_2007_47_10_a6 ER -
%0 Journal Article %A V. Korneev %A A. Rytov %T Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 1727-1745 %V 47 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a6/ %G en %F ZVMMF_2007_47_10_a6
V. Korneev; A. Rytov. Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1727-1745. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a6/
[1] Babuška I., Craig A., Mandel J., Pitkäranta J., “Efficient preconditioning for the $p$-version finite element method in two dimensions”, SIAM J. Numer. Analys., 28:3 (1991), 624–661 | DOI | MR | Zbl
[2] Ainsworth M., “A preconditioner based on domain decompisition for $h-p$ finite element approximation on quasiuniform meshes”, SIAM J. Numer. Analys., 33 (1996), 1358–1376 | DOI | MR | Zbl
[3] Pavarino L. E., Widlund O. B., “Polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions”, SIAM J. Numer. Analys., 37:4 (1996), 1303–1335 | DOI | MR
[4] Ivanov S. A., Korneev V. G., “Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases”, Matematicheskoie modelirovanie (Math. Modelling), 8:9 (1996), 63–73 | MR | Zbl
[5] Korneev V. G., Jensen S., “Preconditioning of the $p$-version of the finite element method”, Computer Meth. Appl. Mech. Engrg., 150:1–4 (1997), 215–238 | DOI | MR | Zbl
[6] Casarin M. A., “Quasi-optimal Schwarz methods for the conforming spectral element discretization”, SIAM J. Numer. Analys., 34:6 (1997), 2482–2502 | DOI | MR | Zbl
[7] Oden J. T., Patra A., Feng Y. S., “Parallel Domain decomposition solver for adaptive $hp$ finite element methods”, SIAM J. Numer. Analys, 34 (1997), 2090–2118 | DOI | MR | Zbl
[8] Korneev V. G., Flaherty J., Oden T., Fish J., “$Hp$-version additive Schwarz algorithms on triangular meshes”, Matematicheskoie modelirovanie (Math. Modelling), 14:2 (2002), 61–94 | MR | Zbl
[9] Toselli A., Widlund O., Domain decomposition methods – algorithms and theory, Springer, Berlin etc., 2005 | MR | Zbl
[10] Orzag A., “Spectral methods for problems in complex geometries”, J. Comput. Phys., 37 (1980), 70–92 | DOI | MR
[11] Korneev V. G., “Almost optimal method for solving Dirichlet problems on subdomains of decomposition of hierarchical $hp$-version”, Differcntsial'nye uravnenia (Different. Equations), 37:7 (2001), 1–10 | MR
[12] Korneev V. G., “Local Dirichlet problems on subdomains of decomposition in $hp$ discretizations, and optimal algorithms for their solution”, Matematicheskoie modelirovanie (Math. Modelling), 14:5 (2002), 51–74 | MR | Zbl
[13] Beuchter S., “Multigrid solver for the inner problem in domain decomposition methods for $p$-FEM”, SIAM J. Numer. Analys., 40:4 (2002), 928–944 | DOI | MR
[14] Beuchter S., Schneider R., Schwab R., “Multiresolution weighted norm equivalences and applications”, Numer. Math., 98:1 (2004), 67–97 | DOI | MR
[15] Korneev V., Langer U., Xanthis L., “On fast domain decomposition solving procedures for $hp$-discretizations of 3-d elliptic problems”, Comput. Meth. Appl. Math., 3:4 (2003), 536–559 | MR | Zbl
[16] Korneev V., Langer U., Xanthis L., “Fast adaptive domain decomposition algorithms for $hp$-discretizations of 2-d and 3-d elliptic equations: recent advances”, HERMIS-$\mu\pi$: Internat. J. Comput. Math. and its Applic., 4 (2003), 27–44 | MR | Zbl
[17] Korneev V., Xanthis L., Anoufriev I., “Solving finite element hp discretizations of elliptic problems by fast DD algorithms”, Tr. St. Petersburg State Polytechn. Univ., 485, 2002, 126–153
[18] Korneev V. G., Xanthis L., Anufriev I. E., Hierarchical and Lagrange hp discretizations and fast domain decomposition solvers for them, SFB Rept 02-18, Johannes Kepler Univ. Linz, Linz, 2002
[19] Anoufriev I., Korneev V., Rytov A., “Computer testing of fast domain decomposition algorithms for $hp$ discretizations of 2-nd order elliptic equations”, Proc. Hellenic-European Conf. Computer Math. and its Applic. V. 1 (HERCMA 2003), LEA Publs., Athens, 2003, 99–108
[20] Anoufriev I., Korneev V., “Fast domain decomposition solver for degenerating PDE of 4th order in 3D domain”, Matematica Balkanika, 6:1 (2006), 101–112
[21] Shen J., Wang F., Xu J., “A finite element multigrid preconditioner for Chebyshev-collocation methods”, Appl. Numer. Math., 33 (2000), 471–477 | DOI | MR | Zbl
[22] Korneev V., Rytov A., “On the interrelation between fast solvers for spectral and hierarchical $p$ elements”, HERMIS-$\mu\pi$: Internat. J. Comput. Math. and its Applic., 6 (2005), 99–113 http://www.aueb.gr/pympe/hermis/hermis volume-6/
[23] Korneev V., Rytov A., “On existence of the essential interrelation between spectral and hierarchical elements”, Mesh Methods for Boundary Value Problems and Applic., Proc. 6-th All-Russian Seminar (Materialy 6-ogo vserossiiskogo seminara), Kazan State Univ., Kazan, 2005, 141–150
[24] Smith B. F., “A domain decomposition algorithm for elliptic problems in three dimentions”, Numer. Math., 60:4 (1991), 219–234 | DOI | MR
[25] Dryja M., Smith B. F., Widlimd O. B., “Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions”, SIAM J. Numer. Analys., 31:6 (1994), 1662–1694 | DOI | MR | Zbl
[26] Bramble J. H., Pasciak J. E., Schatz A. H., “The construction of preconditioners for elliptic problems by substructuring. I”, Math. Comput., 47:175 (1986), 103–134 | DOI | MR | Zbl
[27] Bramble J. H., Pasciak J. E., Schatz A. H., “The constraction of preconditioners for elliptic problems by substructuring. II”, Math. Comput., 49:17 (1987), 1–16 | DOI | MR | Zbl
[28] Bramble J. H., Pasciak J. E., Schatz A. H., “The constraction of preconditioners for elliptic problems by substructuring. III”, Math. Comput., 51:184 (1988), 415–430 | DOI | MR | Zbl
[29] Bramble J. H., Pasciak J. E., Schatz A. H., “The constraction of preconditioners for elliptic problems by substructuring. IV”, Math. Comput., 53:187 (1989), 1–24 | DOI | MR | Zbl
[30] Bernardi Ch., Maday Y., “Polynomial interpolation results in Sobolev spaces”, J. Comput. and Appl. Math., 43 (1992), 53–80 | DOI | MR | Zbl
[31] Bernardi Ch., Maday Y., Approximations spectrales de problemes aux limites elliptiques, Math. Appl., 10, Springer, Paris, 1992 | MR
[32] Canuto C., “Stabilizaiton of spectral methods by finite element bubble functions”, Comput. Meth. Appl. Mech. Engrg., 116 (1994), 13–26 | DOI | MR | Zbl
[33] Grisvard P., Elliptic problems in nonsmooth domains, Pitman Publishing, Boston, 1985 | MR | Zbl
[34] Lions J.-L., Maqenes E. M., Nonhomogeneous boundary value problems and applications, v. 1, Springer, Berlin etc., 1972
[35] Ciarlet P., The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam etc., 1978 | MR | Zbl
[36] “On the construction of variational-difference schemes of higher orders of accuracy”, Vestnik Leningrad Univ. Math., 3 (1976), 301–316 | MR | Zbl
[37] Bernardi Ch., Dauge M., Maday Y., “Relévements de traces presérvant les polinomes”, C. R. acad. Sci. Paris, Sér. I. Math., 315 (1992), 333–338 | MR | Zbl
[38] Bernardi Ch., Dauge M., Maday Y., Polynomials in weighted Sobolev spaces: Basics and trace liftings, Publications du Laboratoire d'Analyse Numerique, R92039, Univ. Pierre et Marie Curie, Paris, 1993 | Zbl
[39] Korneev V., Langer U., “Domain decomposition methods and preconditioning”, Encyclopedia Comput. Mech., v. 1, John Wiley Sons, Ltd., 2004, 617–647