Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1706-1726
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A grid approximation of the boundary value problem for a singularly perturbed parabolic reaction-diffusion equation is considered in a domain with the boundaries moving along the axis $x$ in the positive direction. For small values of the parameter $\varepsilon$ (this is the coefficient of the higher order derivatives of the equation, $\varepsilon\in(0,1]$), a moving boundary layer appears in a neighborhood of the left lateral boundary $S_1^L$. In the case of stationary boundary layers, the classical finite difference schemes on piece-wise uniform grids condensing in the layers converge $\varepsilon$-uniformly at a rate of $O(N^{-1}\ln N+N_0)$, where $N$ and $N_0$ define the number of mesh points in $x$ and $t$. For the problem examined in this paper, the classical finite difference schemes based on uniform grids converge only under the condition $N^{-1}+N_0^{-1}\ll\varepsilon$. It turns out that, in the class of difference schemes on rectangular grids that are condensed in a neighborhood of $S_1^L$ with respect to $x$ and $t$, the convergence under the condition $N^{-1}+N_0^{-1}\le\varepsilon^{1/2}$ cannot be achieved. Examination of widths that are similar to Kolmogorov's widths makes it possible to establish necessary and sufficient conditions for the $\varepsilon$-uniform convergence of approximations of the solution to the boundary value problem. These conditions are used to design a scheme that converges $\varepsilon$-uniformly at a rate of $O(N^{-1}\ln N+N_0)$.
            
            
            
          
        
      @article{ZVMMF_2007_47_10_a5,
     author = {G. I. Shishkin},
     title = {Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1706--1726},
     publisher = {mathdoc},
     volume = {47},
     number = {10},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a5/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin TI - Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1706 EP - 1726 VL - 47 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a5/ LA - ru ID - ZVMMF_2007_47_10_a5 ER -
%0 Journal Article %A G. I. Shishkin %T Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 1706-1726 %V 47 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a5/ %G ru %F ZVMMF_2007_47_10_a5
G. I. Shishkin. Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1706-1726. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a5/
