Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1692-1700 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in $\mathbb R^2$. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.
@article{ZVMMF_2007_47_10_a3,
     author = {T. V. Zavrazhina},
     title = {Numerical simulation of the transition to chaos in a~dissipative {Duffing} oscillator with two-frequency excitation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1692--1700},
     year = {2007},
     volume = {47},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a3/}
}
TY  - JOUR
AU  - T. V. Zavrazhina
TI  - Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1692
EP  - 1700
VL  - 47
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a3/
LA  - ru
ID  - ZVMMF_2007_47_10_a3
ER  - 
%0 Journal Article
%A T. V. Zavrazhina
%T Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1692-1700
%V 47
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a3/
%G ru
%F ZVMMF_2007_47_10_a3
T. V. Zavrazhina. Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1692-1700. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a3/

[1] Anischenko B. C., Slozhnye kolebaniya v prostykh sistemakh: mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, Nauka, M., 1990 | MR

[2] Gulyaev V. I., Zavrazhina T. V., Zavrazhina N. M., Universalnye zakonomernosti zarozhdeniya khaoticheskikh dvizhenii nelineinykh mekhanicheskikh sistem, VIPOL, Kiev, 1999

[3] Mun F., Khaoticheskie kolebaniya, Mir, M., 1990 | MR

[4] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987 | MR

[5] Huseyin Koncay, Lin Rui, “An intrinsic multiple-scale harmonic balance method for nonlinear vibration and bifurcation problems”, Internat. J. Non-Linear Mech., 26:5 (1991), 727–740 | DOI | MR | Zbl

[6] Pei Qinyuam, Li Li, “The chaotic behaviour of a nonlinear oscillator”, Appl. Math. and Mech., 14:5 (1993), 377–387 | MR

[7] Van Doorin R., “On the transition from regular to chaotic behaviour in the Duffing oscillator”, J. Sound and Vibration, 123:2 (1988), 327–339 | DOI | MR

[8] Yagasaki K., Sakata M., Kimura K., “Dynamics of a weakly nonlinear system subjected to combined parametric and external excitation”, Trans. ASME. J. Appl. Mech., 57:1 (1990), 209–217 | MR | Zbl

[9] Belogorodtsev A. B., “Teoriya regulyarnogo i khaoticheskogo povedeniya slabonelineinykh ostsillyatorov s kvaziperiodicheskim vozdeistviem”, Tezisy dokl. II Vses. konf. “Nelineinye kolebaniya mekhanich. sistem”, Gorkii, 1990, 30–31

[10] Brindley J., “Noisy periodicity and non chaotic strange attractors in forced nonlinear oscillators”, Tagunsber/ Math. Forschungsinst., Oberwolfach., 42 (1991), 5

[11] Wojewoda J., Kapitaniak T., “Oscillations of a quasiperiodically forced system with dry friction”, J. Sound and Vibration, 163:2 (1993), 379–384 | DOI | Zbl

[12] Yagasaki K., “The influence of phase locking on chaotic behavior in a two-frequency perturbation of Duffing's equation”, Mem. Fac. Engng. Tamagava Univ., 26 (1991), 15–21 | MR

[13] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, LGU, L., 1991 | MR

[14] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii, Nauka, M., 1987 | MR

[15] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971 | MR

[16] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[17] Ioss Zh., Dzhozef D., Elementarnaya teoriya ustoichivosti i bifurkatsii, Mir, M., 1983 | MR

[18] Gulyaev V. I., Bazhenov V. A., Gotsulyak E. A. i dr., Ustoichivost periodicheskikh protsessov v nelineinykh mekhanicheskikh sistemakh, Vischa shkola, Lviv, 1983

[19] Vainberg M. M., Trenogin B. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[20] Puankare A., Izbrannye trudy, v. 1–3, Nauka, M., 1971–1974

[21] Feigenbaum M. J., “Universal bahaviour in nonlinear systems”, Los Alamos Sci., 1:1 (1980), 4–27 | MR